Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)-3x\left(1-x\right)\)
\(=x^3-9x^2+27x-27-\left(x^3-27\right)-3x+3x^2\)
\(=x^3-9x^2+27x-27-x^3+27-3x+3x^2\)
\(=24x-6x^2\)
Hình như đề có chỗ sai sót ở đâu đó bạn .
vãi ò ông ngx thành đạt chép sai đầu bài r (x-1)3 cchchuchưchứchứ kkoko pphphaphaiphảiphải (x-3)33
\(\left(x-1\right)^3-\left(x-3\right)\left(x^2+3x+9\right)-3x\left(1-x\right)\)
\(=x^3-3x^2+3x-1-\left(x^3-27\right)-3x+3x^2\)
\(=x^3-3x^2+3x-1-x^3+27-3x+3x^2\)
\(=26\Rightarrow dpcm\)
a) \(x^2+xy+y^2+1\)
\(=x^2+xy+\dfrac{y^2}{4}-\dfrac{y^2}{4}+y^2+1\)
\(=\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1\)
mà \(\left\{{}\begin{matrix}\left(x+\dfrac{y}{2}\right)^2\ge0,\forall x;y\\\dfrac{3y^2}{4}\ge0,\forall x;y\end{matrix}\right.\)
\(\Rightarrow\left(x+\dfrac{y}{2}\right)^2+\dfrac{3y^2}{4}+1>0,\forall x;y\)
\(\Rightarrow dpcm\)
b) \(...=x^2-2x+1+4\left(y^2+2y+1\right)+z^2-6z+9+1\)
\(=\left(x-1\right)^2+4\left(y^{ }+1\right)^2+\left(z-3\right)^2+1>0,\forall x.y\)
\(\Rightarrow dpcm\)
1)
\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)
Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:
\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)
2) Bạn xem lại đề!
\(A=x^2+x+1=x^2+2.0,5x+0,5^2+0,75=\left(x+0,5\right)^2+0,75\ge0,75>0\)
Vậy A > 0
x^2 + xy + y^2 + 1 > 0 với mọi x, y;
ta có x^2+xy+y^2+1=(x^2+2x.y/2+y^2/4)+-y^2/4+y^2+1=(x+y/2)^2+3y^2/4+1
ta có (x+y/2)^2>=0 với mọi x, y
3y^2/4>=0 với mọi y
=>(x+y/2)^2+3y^2/4+1>0 với mọi x, y
2,4x^2 + 4x + 11 > 0 với mọi x
ta có 4x^2+4x+11=4x^2+4x+1+10=(2x+1)^2+10> 0 với mọi x
3,x^2-2x+y^2-4y+7>0 với mọi x,y
ta có x^2-2x+y^2-4y+7
=(x^2-2x+1)+(y^2-4y+4)+1
=(x-1)^2+(y-2)^2+1>0 với mọi x,y
Có gì khó hiểu đâu.
Bạn có thể xem 1 số video các thầy cô giảng cho dễ nhé
Hk tốt và nhớ k mk nha.