Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có nhiều cách giải,cách đặt k:
a/b=c/d=k thì a=bk;c=dk
thay vào:
\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2\left(k+1\right)}{d^2\left(k+1\right)}=\frac{b^2}{d^2}\) (1)
ab/cd=..... (2)
từ (1) và (2) =>đpcm
Đặt \(\frac{a}{b}=\frac{c}{d}=k=>a=bk,c=dk\)
Ta có:\(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\frac{b^2.k^2+b^2}{d^2.k^2+d^2}=\frac{b^2.\left(k^2+1\right)}{d^2.\left(k^2+1\right)}=\frac{b^2}{d^2}\)
\(\frac{a.b}{c.d}=\frac{bk.b}{dk.d}=\frac{b^2.k}{d^2.k}=\frac{b^2}{d^2}\)
=>\(\frac{a^2+b^2}{c^2+d^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\)
=>\(\frac{a^2+b^2}{c^2+d^2}=\frac{a.b}{c.d}\)
vì \(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}=K\)
=>x=-4k; y=-7k; z=3k
\(\frac{x}{-4}=\frac{y}{-7}=\frac{z}{3}\) =\(\frac{-2.\left(-4k\right)+\left(-7k\right)+5.3k}{2.\left(-4k\right)-3.\left(-7k\right)-6.3k}\)
=\(\frac{16k}{-5k}=\frac{16}{-5}=\frac{-16}{5}\)
Ai giúp mình với
Nhanh đi mà
Năn nỉ mà
Hu hu
Mình cần gấp lắm
Đặt \(\frac{a}{b}=\frac{c}{d}=k\), suy ra \(a=bk;c=dk\)
\(VT=\frac{2b^2k^2-3b^2k+3b^2}{2b^2+3b^2k}=\frac{b^2\left(2k^2-3k+3\right)}{b^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(1\right)\)
\(VP=\frac{2d^2k^2-3d^2k+3d^2}{2d^2+3d^2k}=\frac{d^2\left(2k^2-3k+3\right)}{d^2\left(2+3k\right)}=\frac{2k^2-3k+3}{3k+2}\left(2\right)\)
Từ (1) và (2) suy ra ĐPcm
Vì \(\frac{a}{b}=\frac{c}{d}\) nên ad=bc và \(\frac{a}{c}=\frac{b}{d}=\frac{ab}{cd}\)(1)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có: \(\frac{a}{b}=\frac{c}{d}=\frac{a+b}{c+d}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)(2)
Từ (1) và (2), ta suy ra: \(\frac{ab}{cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\)
Vì \(\frac{a}{b}=\frac{c}{d}=>\frac{a}{c}=\frac{b}{d}\)
=>\(\frac{a}{c}.\frac{b}{d}=\frac{a}{c}.\frac{a}{c}=\frac{b}{d}.\frac{b}{d}\)
=>\(\frac{ab}{cd}=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\)(tính chất dãy tỉ số bằng nhau)
=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
=>ĐPCM