Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: n^2 + n + 2 = n(n+1) + 2.
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6.
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8.
Mà: 2; 4; 8 không chia hết cho 5.
Nên: n(n+1)+2 không chia hết cho 5.
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N
Ta có: n2+n+2=n(n+1)+2
Để số trên chia hết cho 15 thì số trên phải chia hết cho 3 và 5.
Mà tích của 2 số tự nhiên liên tiếp có tận cùng là 0,2,6.
Mà số trên cộng với 2 có tận cùng sẽ là 2,4,8. ( không chia hết cho 5).
Vậy số trên không chia hết cho 15.
Với \(n=1\) thì đề sai, mà hình như với số nào đề cũng sai...
A = 4n + 4n + 16 = 2.4n + 16
Có 4 đồng dư với 1 (mod 3)
=> 4n đồng dư với 1(mod 3)
=> 2.4n đồng dư với 2(mod 3)
Mà 16 đồng dư với 1(mod 3)
=> 2.4n + 16 đồng dư với 1+2=3(mod 3)
Hay A chia hết cho 3 với mọi số nguyên dương n
xét số dư n khi chia cho 7 là 1,2,3,4,5 hoặc 6 (do n không chia hết cho 7 )
=>số dư của \(n^3\)khi chia cho 7 lần lượt là 1,6
nếu dư 1=>n^3-1 chia hết cho 7
nếu dư 6=> n^3+1 chia hết cho 7
p/s : bài này bạn dùng đồng dư cũng đc -_-
Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A chia 3 dư 2
Nếu n chia 3 dư 1 => n^2 chia 3 dư 1 => A chia 3 dư 1
Nếu n chia 3 dư 2 => n^2 chia 3 dư 1 => A chia 3 dư 2
=> ĐPCM
k mk nha
ta có: n2+n+1= (n+2)(n-1) +3
ta thấy hiệu hai số: (n+2) -(n-1) =3 chia hết cho 3
suy ra:
( *) hoặc (n+2) và (n-1) cùng chia hết cho 3, khi đó (n+2)(n-1) chia hết cho 9 nhưng 3 không chia hết cho 9 , dó đó (n+2)(n-1) +3 không chia hết cho 9 hay n2+n+1 không chia hết cho 9
(**) hoặc (n+2) và (n-1) cùng không chia hết cho 3, khi đó (n+2)(n-1) ko chia hết cho 3,suy ra (n+2)(n-1) +3 ko chia hết cho 3. Mà đã không chia hết cho 3 thì đương nhiên không chia hết cho 9 rồi
------Cho 1 Đ.ú.n,g nhé