K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

Ta có: n^2 + n + 2 = n(n+1) + 2. 
n(n+1) là tích của 2 số tự nhiên liên liên tiếp nên có chữ số tận cùng là 0; 2; 6. 
Suy ra: n(n+1)+2 có chữ số tận cùng là 2; 4; 8. 
Mà: 2; 4; 8 không chia hết cho 5. 
Nên: n(n+1)+2 không chia hết cho 5. 
Vậy: n^2 + n+2 không chia hết cho 15 với mọi n thuộc N

18 tháng 1 2017

Ta có: n2+n+2=n(n+1)+2

Để số trên chia hết cho 15 thì số trên phải chia hết cho 3 và 5.

Mà tích của 2 số tự nhiên liên tiếp có tận cùng là 0,2,6.

Mà số trên cộng với 2 có tận cùng sẽ là 2,4,8. ( không chia hết cho 5).

Vậy số trên không chia hết cho 15.

29 tháng 8 2020

Với \(n=1\) thì đề sai, mà hình như với số nào đề cũng sai...

21 tháng 1 2020

A = 4n + 4n + 16 = 2.4n + 16

Có 4 đồng dư với 1 (mod 3)

=> 4n đồng dư với 1(mod 3)

=> 2.4n đồng dư với 2(mod 3)

Mà 16 đồng dư với 1(mod 3)

=> 2.4n + 16 đồng dư với 1+2=3(mod 3)

Hay A chia hết cho 3 với mọi số nguyên dương n

21 tháng 1 2020

bạn ơi

\(2^{2^n}\)sao bằng \(4^n\)được hả bạn

29 tháng 7 2016

xét số dư n khi chia cho 7 là 1,2,3,4,5 hoặc 6 (do n không chia hết cho 7 )
=>số dư của \(n^3\)khi chia cho 7 lần lượt là 1,6
nếu dư 1=>n^3-1 chia hết cho 7
nếu dư 6=> n^3+1 chia hết cho 7
p/s : bài này bạn dùng đồng dư cũng đc -_-

29 tháng 7 2016

Gọi n=7x+a

n^3=(7x+a)^3, a=[1,2,3,4,5,6], x€Z vì n không chia hết cho 7

Khai hằng đẳng thức (7x+a)^3= ...+a^3

Những số kia chia hết cho 7 nên ta chỉ  xét a^3

Ta thay thế lần lượt a=1,..,6

Ta chứng minh đựợc a^3-1 hoặc a^3+1 sẽ chia hết cho 7.

1 tháng 12 2017

Nếu n chia hết cho 3 => n^2 chia hết cho 3 => A chia 3 dư 2

Nếu n chia 3 dư 1 => n^2 chia 3 dư 1 => A chia 3 dư 1

Nếu n chia 3 dư 2 => n^2 chia 3 dư 1 => A chia 3 dư 2

=> ĐPCM

k mk nha

1 tháng 5 2015

ta có: n2+n+1= (n+2)(n-1) +3 
ta thấy hiệu hai số: (n+2) -(n-1) =3 chia hết cho 3 
suy ra: 
( *) hoặc (n+2) và (n-1) cùng chia hết cho 3, khi đó (n+2)(n-1) chia hết cho 9 nhưng 3 không chia hết cho 9 , dó đó (n+2)(n-1) +3 không chia hết cho 9 hay n2+n+1 không chia hết cho 9 
(**) hoặc (n+2) và (n-1) cùng không chia hết cho 3, khi đó (n+2)(n-1) ko chia hết cho 3,suy ra (n+2)(n-1) +3 ko chia hết cho 3. Mà đã không chia hết cho 3 thì đương nhiên không chia hết cho 9 rồi
------Cho 1 Đ.ú.n,g nhé