K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 5 2022

\(\left(n^2-3n+1\right)^2-1=\left(n^2-3n\right)\left(n^2-3n+2\right)=n\left(n-3\right)\left(n-1\right)\left(n-2\right)\)

-Theo nguyên lí Dirichlet, trong 4 số tự nhiên liên tiếp luôn có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3, 1 số chia hết cho 4.

\(\Rightarrow n\left(n-1\right)\left(n-2\right)\left(n-3\right)\) chia hết cho \(2.3.4=24\)

\(\Rightarrowđpcm\)

16 tháng 5 2022

\(n=1\) thì biểu thức đó ko chia hết cho 24.

12 tháng 4 2020

Ta có:

(n2+3n+1)2-1

= (n2+3n+1-1)(n2+3n+1+1)

= (n2+3n)(n2+3n+2)

=(n2+3n)(n2+n+2n+2)

=(n2+3n)(n(n+1)+2(n+1))

=n(n+1)(n+2)(n+3)

với mọi n thuộc N thì n(n+1)(n+2)(n+3) là tích của 4 số tự nhiên liên tiếp

=> tồn tại 2 số chia hết cho 2 và chia hết cho 4 => chia hết cho 8

tồn tại một số chia hết cho 3

mà BCNN(8;3)=24 => n(n+1)(n+2)(n+3) chia hết cho 24

nên (n2+3n+1)2-1 chia hết cho 24 với mọi n thuộc N

Chúc bạn học tốt.

11 tháng 7 2017

Theo đề bài ta có :

\(\left(n^2+3n+1\right)^2-1=\left(n^2+3n\right)\left(n^2+3n+2\right)\)

=> \(\left(n^2+3n+1\right)^2-1=n\left(n+3\right)\left(n^2+n+2n+2\right)\)

\(n\left(n+3\right)\left(n\left(n+1\right)+2\left(n+1\right)\right)=n\left(n+3\right)\left(n+2\right)\left(n+1\right)\)

Ta Thấy :

\(n;n+1;n+2;n+3\)là 4 số tự nhiên liên tiếp

Mà tích của 3 số tự nhiên liên tiếp luôn chia hết cho 3

=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮3\)

Tích của 4 số tự nhiên liên tiếp cũng chia hết cho 4 vì có 2 số chẵn trong 4 số

=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮4\)

Tích của 2 số tự nhiên liên tiếp chia hết cho 2

=> \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮2\)

Vậy \(n\left(n+1\right)\left(n+2\right)\left(n+3\right)⋮24\left(đpcm\right)\)

29 tháng 9 2019

a) n(n + 5) - (n - 3)(n + 2) = n2 + 5n - n2 - 2n + 3n + 6 = 6n + 6 = 6(n + 1) \(⋮\)\(\forall\)\(\in\)Z

b) (n2 + 3n - 1)(n + 2) - n3  + 2 = n3 + 2n2 + 3n2 + 6n - n - 2 - n3 + 2 = 5n2 + 5n = 5n(n + 1) \(⋮\)\(\forall\)\(\in\)Z

c) (6n + 1)(n + 5) - (3n + 5)(2n - 1) = 6n2 + 30n + n + 5 - 6n2 + 3n - 10n + 5 = 24n + 10 = 2(12n + 5) \(⋮\)\(\forall\)\(\in\)Z

d) (2n - 1)(2n + 1) - (4n - 3)(n - 2) - 4 = 4n2 - 1 - 4n2 + 8n + 3n - 6 - 4 = 11n - 11 = 11(n - 1) \(⋮\)11 \(\forall\)\(\in\)Z