Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
có ai kiếm cho tui cái đề thi hsg lp 9 ko????? Kiếm đc thì gửi qua fb nhé. tên fb là Sigme Gilgadian
\(\sqrt{4-3\sqrt{10-3x}}=x-2\left(đk:2\le x\le\frac{10}{3}\right)\)
\(< =>4-3\sqrt{10-3x}=x^2-4x+4\)\(< =>4x-x^2-3\sqrt{10-3x}=0\)
\(< =>4x-12-\left(x^2-9\right)-3\sqrt{10-3x}+3=0\)
\(< =>4\left(x-3\right)-\left(x^2-9\right)-3\left(\sqrt{10-3x}-1\right)=0\)
\(< =>4\left(x-3\right)-\left(x-3\right)\left(x+3\right)+3\frac{3\left(x-3\right)}{\sqrt{10-3x}+1}=0\)
\(< =>\left(x-3\right)\left(4-x-3+\frac{9}{\sqrt{10-3x}+1}\right)=0\)
\(< =>\orbr{\begin{cases}x-3=0\\1-x+\frac{9}{\sqrt{10-3x}+1}=0\end{cases}< =>x=3}\)
Do \(\frac{9}{\sqrt{10-3x}+1}\ge9< = >1+\frac{9}{\sqrt{10-3x}+1}\ge10\)Mà \(x\le\frac{9}{3}\)=> vô nghiệm
cậu ạ - Sách hướng dẫn sử dụng nó sinh ra không phải để đẹp đâu
Cậu ạ...não cậu có rớt đi đâu đó ko? Nếu trong SHD có hết thì cuộc thi HSG trên MTCT là giành cho những ai HỌC BẰNG SÁCH HƯỚNG DẪN hả bạn?
Ta có nếu x=0 hoặc y=0 hoặc z=0 thì hpt vô nghiệm. Vậy x,y,z khác 0
\(\hept{\begin{cases}\frac{xy}{x+y}=\frac{6}{5}\\\frac{yz}{y+z}=\frac{4}{3}\\\frac{zx}{z+x}=\frac{12}{7}\end{cases}}\)nghịch đảo ta có (nghịch đảo đc vì x,y,z khác 0)\(\hept{\begin{cases}\frac{x+y}{xy}=\frac{5}{6}\\\frac{y+z}{yz}=\frac{3}{4}\\\frac{z+x}{xz}=\frac{7}{12}\end{cases}}\)<=>\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{5}{6}\\\frac{1}{y}+\frac{1}{z}=\frac{3}{4}\\\frac{1}{z}+\frac{1}{x}=\frac{7}{12}\end{cases}}\)
Đặt a=\(\frac{1}{x}\),b=\(\frac{1}{y}\),c=\(\frac{1}{z}\)ta có \(\hept{\begin{cases}a+b=\frac{5}{6}\\b+c=\frac{3}{4}\\c+a=\frac{7}{12}\end{cases}}\) <=>\(\hept{\begin{cases}a+b+c=\left(\frac{5}{6}+\frac{3}{4}+\frac{7}{12}\right):2\\b=\frac{5}{6}-a\\c=\frac{7}{12}-a\end{cases}}\)
Thay vào giải ta có \(a+b+c=\frac{13}{12}\)
\(a+\frac{5}{6}-a+\frac{7}{12}-a=\frac{13}{12}\) => \(a=\frac{1}{3}\)=>\(x=3\)
tiếp tục tìm đc \(b=\frac{1}{2}\)=>\(y=2\)
\(c=\frac{1}{4}\)=>\(z=4\)
Vậy nghiệm hpt là \(\hept{\begin{cases}x=3\\y=2\\z=4\end{cases}}\)
Đặt \(M=\hept{\begin{cases}\frac{xy}{x+y}=\frac{6}{5}\\\frac{yz}{y+z}=\frac{4}{3}\\\frac{zx}{z+x}=\frac{12}{7}\end{cases}}\)
Ta có: \(\frac{xy}{x+y}=\frac{6}{5}\Leftrightarrow xy=6\&x+y=5\)
\(\Rightarrow x=5-6=\left(-1\right)\)
\(\frac{yz}{y+z}=\frac{4}{3}\Leftrightarrow yz=4\&y+z=3\)
\(\Rightarrow y=3-4=\left(-1\right)\)
\(\frac{zx}{z+x}=\frac{12}{7}\Leftrightarrow zx=12;z+x=7\Rightarrow z=7-12=-5\)
\(\Rightarrow\hept{\begin{cases}x=-1\\y=-1\\z=-5\end{cases}}\)
XÓA SẠCH
Có mk nèk