K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Đáp án C

28 tháng 2 2018

Đáp án là C

Số cách chọn 2 số chẵn trong tập hợp 2 ; 4 ; 6 ; 8  là: C 4 2  cách.

Số cách chọn 2 số lẻ trong tập hợp 1 ; 3 ; 5 ; 7 ; 9  là: C 5 2  cách.

Số cách hoán vị 4 chữ số đã chọn lập thành 1 số tự nhiên là: 4! cách.

Vậy có 4 ! . C 4 2 . C 5 2  số tự nhiên thỏa mãn yêu cầu bài toán.

NV
7 tháng 3 2021

Chọn 2 số lẻ từ 5 chữ số lẻ: \(C_5^2\)

Chọn 3 chữ số chẵn từ 5 chữ số chẵn: \(C_5^3\)

Xếp 8 chữ số theo thứ tự bất kì: \(C_5^2.C_5^3.\dfrac{8!}{2!.2!.2!}\)

Chọn 3 chữ số chẵn từ 5 chữ số chẵn trong đó có mặt số 0: \(C_4^2\)

Xếp 8 chữ số (có mặt số 0) sao cho số 0 đứng đầu: \(C_5^2C_4^2.\dfrac{7!}{2!.2!}\)

Số số thỏa mãn: \(C_5^2C_5^2\dfrac{8!}{2!.2!.2!}-C_5^2C_4^2.\dfrac{7!}{2!.2!}=...\)

9 tháng 3 2021

Đưa các chữ số của số tự nhiên cần lập vào các ô trống:

 .  .  .  .  .  .  .  . 

TH1: Có chữ số 0: 

Đưa 0 vào : \(C^2_7\) cách 

Chọn và đưa 2 số chẵn còn lại vào : \(C^2_4C^2_6C^2_4\) cách

Chọn 2 chữ số lẻ : \(A^2_5\) cách

=>TH1 lập được \(C^2_7C^2_4C^2_6C^2_4A^2_5=226800\) số

TH2: Không có chữ số 0: 

Chọn và đưa 3 số chẵn vào : \(C^3_4C^2_8C^2_6C^2_4\) cách

Chọn 2 chữ số lẻ : \(A^2_5\) cách

=>TH2 lập được \(C^3_4C^2_8C^2_6C^2_4A^2_5=201600\) số

Vậy có 226800 + 201600 = 428400 số

NV
2 tháng 11 2021

TH1: chữ số hàng đơn vị bằng 0

Chọn 4 chữ số từ 8 chữ số còn lại và hoán vị chúng: \(A_8^4\) cách

4 chữ số này tạo ra 5 khe trống, xếp 3 chữ số 1 vào 5 khe trống đó: \(C_5^3\) cách

\(\Rightarrow A_8^4.C_5^3\) số

TH2: chữ số hàng đơn vị khác 0: có 4 cách chọn

- Chọn 4 chữ số từ 8 chữ số còn lại và hoán vị chúng: \(A_8^4\) cách

Xếp 3 chữ số 1 vào 5 khe trống: \(C_5^3\) cách

- Chọn 4 chữ số từ 8 chữ số còn lại sao cho có xuất hiện số 0, cố định số 0 đứng đầu và hoán vị 3 chữ số còn lại: \(A_7^3\) cách

3 chữ số tạo ra 4 khe trống, xếp 3 chữ số 1 vào 4 khe trống: \(C_4^3\) cách

\(\Rightarrow4\left(A_8^4.C_5^3-A_7^3.C_4^3\right)\) số

Tổng cộng: \(A_8^4.C_5^3+4\left(A_8^4.C_5^3-A_7^3.C_5^3\right)\) số

18 tháng 11 2021

Cho mình hỏi là cái chỗ "4 chữ số này tạo ra 5 khe trống" là sao thế ạ

18 tháng 8 2017

Chọn C

Ta có thể chia làm bốn trường hợp sau

TH1: Số 5 có mặt một lần, số 6 có mặt một lần.( Bao gồm các khả năng sau: mỗi số có mặt một lần hoặc một số 5, một số 6 hai số 3 hoặc một số 5, một số 6 hai số 4)

Số các số được tạo thành là: 

TH2: Số 5 có mặt một lần, số 6 không có mặt.

Số các số được tạo thành là: 

TH3: Số 6 có mặt một lần, số 5 không có mặt.

Số các số được tạo thành là: 

TH4: Số 5 và số 6 không có mặt.( Số 3 và số 4 mỗi số có mặt đúng hai lần)

Số các số được tạo thành là: 

Vậy có thể lập được 102 số thỏa mãn đề bài.

1 tháng 1 2018

Đáp án C.

3:

Ta sẽ chia M ra làm 3 nhóm

Nhóm 1: \(A=\left\{0;3;6\right\}\)

Nhóm 2: \(B=\left\{1;4;7\right\}\)

Nhóm 3: \(C=\left\{2;5;8\right\}\)

TH1: 1 số A,1 số B, 1 số C

*Nếu số ở A chọn là số 0 thì sẽ có 3*3*2*2*1=36 cách

*Nếu số A chọn khác 0 thì sẽ là 2*3*3*3!=108 cách

=>Có 108+36=144 cách

TH2: 3 số A

=>Có 2*2*1=4 số

TH3: 3 số B

=>Có 3!=6 số

TH4: 3 số C

=>Có 3!=6 số

=>Có 144+4+6+6=148+12=160 số

25 tháng 8 2021

10560

25 tháng 8 2021

\(\overline{abcde}\)

- TH1 : a là số chẵn ⇒ Giả sử b,c là số chẵn và d,e là số lẻ

+ Chọn số cho a có 4 cách (2 ; 4 ; 6 ; 8) : Lưu ý là chữ số đầu tiên của số có từ 2 chữ số trở nên không được là số 0

+ Chọn số cho b có 3 cách 

+ Chọn số cho c có 2 cách 

+ Chọn số cho d có 5 cách

+ Chọn số cho e có 4 cách 

⇒ Nếu a là số chẵn thì sẽ có 4 . 3 . 2 . 5 . 4 = 480 số

-  Nếu a là số lẻ, giả sử b là số lẻ và c,d,e là số chẵn

+ Chọn số cho a có 5 cách

+ Chọn số cho b có 4 cách

+ Chọn số cho c có 5 cách

+ Chọn số cho d có 4 cách

Chọn số cho e có 3 cách

Vậy khi a là số lẻ thì có 5 . 4 . 5 . 4 . 3 = 1200 (số)

Vậy rốt cuộc là có 1200 + 480 = 1680 (số)