Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian làm riêng xong việc của tổ 1 là x>0 (giờ) và tổ 2 là y>0 giờ
Trong 1 giờ hai tổ lần lượt làm được \(\dfrac{1}{x}\) và \(\dfrac{1}{y}\) phần công việc
Do 2 tổ làm chung trong 8 giờ thì hoàn thành nên: \(8\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)
Hai đội làm việc chung trong 6h và đội 1 làm việc 1 mình thêm 6h thì hoàn thành nên:
\(6\left(\dfrac{1}{x}+\dfrac{1}{y}\right)+6.\dfrac{1}{x}=1\) \(\Leftrightarrow\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)
Ta được hệ pt: \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{2}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{24}\\\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=24\\y=12\end{matrix}\right.\)
Gọi x(h) là thời gian tổ 1 hoàn thành công việc khi làm một mình
y(h) là thời gian tổ 2 hoàn thành công việc khi làm một mình
(Điều kiện: x>6; y>6)
Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{6}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\)(1)
Trong 12 giờ, tổ 1 làm được: \(\dfrac{12}{x}\)(công việc)
Trong 2 giờ, tổ 2 làm được: \(\dfrac{2}{y}\)(công việc)
Theo đề, ta có phương trình: \(\dfrac{12}{x}+\dfrac{2}{y}=1\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\\\dfrac{12}{x}+\dfrac{2}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}+\dfrac{12}{y}=2\\\dfrac{12}{x}+\dfrac{2}{y}=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{10}{y}=1\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{6}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=10\\\dfrac{1}{x}+\dfrac{1}{10}=\dfrac{1}{6}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{15}\\y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=15\\y=10\end{matrix}\right.\)(thỏa ĐK)
Vậy: Tổ 1 cần 15 giờ để hoàn thành công việc khi làm một mình
Tổ 2 cần 10 giờ để hoàn thành công việc khi làm một mình
Gọi khối lượng công việc của tổ 1 và 2 làm được trong 1h là a,b(phần công việc).Gọi x là tổng khối lượng của việc cần hoàn thành \(\left(x,a,b>0\right)\)
Theo đề:Để....trong 6h \(\Rightarrow6\left(a+b\right)=x\left(1\right)\)
Sau 2h làm chung...trong 10h \(\Rightarrow2\left(a+b\right)+10a=x\)
\(\Rightarrow6a+6b=2a+2b+10a\Rightarrow4b=6a\Rightarrow\left\{{}\begin{matrix}a=\dfrac{2}{3}b\\b=\dfrac{3}{2}a\end{matrix}\right.\)
Thế vào (1) \(\Rightarrow\left\{{}\begin{matrix}6\left(a+\dfrac{3}{2}a\right)=x\\6\left(\dfrac{2}{3}b+b\right)=x\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15a=x\\10b=x\end{matrix}\right.\)
\(\Rightarrow\) tổ 1 làm xong trong 15 ngày,tổ 2 làm xong trong 10 ngày
Gọi x,y lần lượt là phần công việc tổ 1 và tổ 2 làm đc trong 1h.(x,y>0)
Vì để hoàn thành 1 công việc 2 tổ phải làm trong 6h nên ta có pt: 6x+6y=1 (1)
Vì sau 2h làm chung thì tổ 2 đc điều đi lm việc khác, tổ 1 đã hoàn thành xong công việc còn lại trong 10h nên ta có pt: 2x+2y+10y=1⇔ 12x+2y=1 (2)
Từ (1) và (2) ta có hệ pt: \(\left\{{}\begin{matrix}6x+6y=1\\12x+2y=1\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}12x+12y=2\\12x+2y=1\end{matrix}\right.\)
⇔\(\left\{{}\begin{matrix}6x+6y=1\\10y=1\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}6x+6.\dfrac{1}{10}=1\\y=\dfrac{1}{10}\end{matrix}\right.\)⇔\(\left\{{}\begin{matrix}x=\dfrac{1}{15}\left(nhận\right)\\y=\dfrac{1}{10}\left(nhận\right)\end{matrix}\right.\)
Vậy thời gian tổ 1 làm riêng là: \(1:\dfrac{1}{15}=15\left(h\right)\)
thời gian tổ 2 làm riêng là: \(1:\dfrac{1}{10}=10\left(h\right)\)
Gọi x(h) là thời gian tổ 1 hoàn thành công việc khi làm một mình
Gọi y(h) là thời gian tổ 2 hoàn thành công việc khi làm một mình
(Điều kiện: x>8; y>8)
Trong 1 giờ, đội 1 làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, đội 2 làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai đội làm được: \(\dfrac{1}{8}\)(công việc)
Do đó, ta có phương trình \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\)(1)
Trong 3 giờ, tổ 1 làm được: \(\dfrac{3}{x}\)(công việc)
Trong 10 giờ, tổ 2 làm được: \(\dfrac{10}{y}\)(công việc)
Theo đề, ta có phương trình: \(\dfrac{3}{x}+\dfrac{10}{y}=\dfrac{2}{3}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\\\dfrac{3}{x}+\dfrac{10}{y}=\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}+\dfrac{3}{y}=\dfrac{3}{8}\\\dfrac{3}{x}+\dfrac{10}{y}=\dfrac{2}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y}=\dfrac{-7}{24}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=24\\\dfrac{1}{x}+\dfrac{1}{24}=\dfrac{1}{8}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}=\dfrac{1}{12}\\y=24\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=12\\y=24\end{matrix}\right.\)(thỏa ĐK)
Vậy: Tổ 1 cần 12 giờ để hoàn thành công việc khi làm một mình
Tổ 2 cần 24 giờ để hoàn thành công việc khi làm một mình
em đéo biết