Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}=\dfrac{1}{3}\) .-.
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
\(=\dfrac{1}{2}-\dfrac{1}{6}=\dfrac{3-1}{6}=\dfrac{2}{6}=\dfrac{1}{3}\)
\(M=\dfrac{1}{2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}\)
\(M=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}\)
\(M=1-\dfrac{1}{7}\)
\(M=\dfrac{6}{7}\)
tham khảo
https://hoc24.vn/cau-hoi/123134145156167.5003535458609#:~:text=l%C3%BAc%2021%3A02-,1,14,-12.3%2B13.4%2B14.5
vào đi
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{100.101}\)\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{100}-\dfrac{1}{101}\)\(=\dfrac{1}{2}-\dfrac{1}{101}=\dfrac{99}{202}\)
CM công thức :
\(\dfrac{1}{n}-\dfrac{1}{n+a}=\dfrac{n+a}{n\left(n+a\right)}-\dfrac{n}{n\left(n+a\right)}=\dfrac{a}{n\left(n+a\right)}\)Nhận xét :
\(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3};\dfrac{1}{3.4}=\dfrac{1}{3}-\dfrac{1}{4};...;\dfrac{1}{100.101}=\dfrac{1}{100}-\dfrac{1}{101}\)
\(\Rightarrow\)\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{100}-\dfrac{1}{101}\)
\(\dfrac{\Rightarrow1}{2}-\dfrac{1}{101}\)
=\(\dfrac{101}{202}-\dfrac{2}{202}=\dfrac{99}{202}\)
~ chúc bn học tốt~
`@` `\text {Ans}`
`\downarrow`
`a)`
\(A=\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}\)
`=`\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{8}-\dfrac{1}{9}\)
`=`\(\dfrac{1}{3}-\left(\dfrac{1}{4}-\dfrac{1}{4}\right)-\left(\dfrac{1}{5}-\dfrac{1}{5}\right)-...-\dfrac{1}{9}\)
`=`\(\dfrac{1}{3}-\dfrac{1}{9}\)
`=`\(\dfrac{2}{9}\)
Vậy, \(A=\dfrac{2}{9}\)
`b)`
\(B=\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+...+\dfrac{1}{23\cdot24}+\dfrac{1}{24\cdot25}\)
`=`\(\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{24}-\dfrac{1}{25}\)
`=`\(\dfrac{1}{5}-\left(\dfrac{1}{6}-\dfrac{1}{6}\right)-\left(\dfrac{1}{7}-\dfrac{1}{7}\right)-...-\dfrac{1}{25}\)
`=`\(\dfrac{1}{5}-\dfrac{1}{25}=\dfrac{4}{25}\)
Vậy, \(B=\dfrac{4}{25}\)
`c)`
\(C=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{98\cdot99}+\dfrac{1}{99\cdot100}\)
`=`\(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\)
`=`\(1-\left(\dfrac{1}{2}-\dfrac{1}{2}\right)-\left(\dfrac{1}{3}-\dfrac{1}{3}\right)-...-\dfrac{1}{100}\)
`=`\(1-\dfrac{1}{100}=\dfrac{99}{100}\)
Vậy, \(C=\dfrac{99}{100}\)
Nhận xét thấy:
\(\dfrac{1}{1.2}\)= 1-\(\dfrac{1}{2}\); \(\dfrac{1}{2.3}=\dfrac{1}{2}-\dfrac{1}{3}\);...
Ta có
A= 1-\(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)
A= 1- \(\dfrac{1}{6}\)
A= \(\dfrac{5}{6}\)
Vậy A= \(\dfrac{5}{6}\)
CAU NAY RAT DE NHA BAN
A=\(\dfrac{1}{1}\)-\(\dfrac{1}{2}\)+\(\dfrac{1}{2}\)-\(\dfrac{1}{3}\)+\(\dfrac{1}{4}\)-\(\dfrac{1}{5}\)+\(\dfrac{1}{5}\)-\(\dfrac{1}{6}\)
A=1-\(\dfrac{1}{6}\)
=>A=\(\dfrac{5}{6}\)
\(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}+\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=\dfrac{1}{2}-\dfrac{1}{10}\)
\(=\dfrac{2}{5}\)
\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\dfrac{1}{3}-\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\dfrac{1}{x+1}=\dfrac{x+1}{324}\)
\(\left(x+1\right)^2=324=18^2\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=18\\x+1=-18\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=17\\x=-19\end{matrix}\right.\)
Ta có \(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\Rightarrow\)\(\dfrac{4-3}{3.4}+\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+...+\dfrac{\left(x+1\right)-x}{x\left(x+1\right)}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\Rightarrow\)\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\Rightarrow\)\(\dfrac{1}{3}-\dfrac{1}{x+1}=\dfrac{1}{3}-\dfrac{x+1}{324}\)
\(\Rightarrow\)\(\dfrac{1}{3}-\dfrac{1}{3}=-\dfrac{x+1}{324}+\dfrac{1}{x+1}\)
\(\Rightarrow\)\(\dfrac{1}{x+1}-\dfrac{x+1}{324}=0\)
\(\Rightarrow\)\(\dfrac{1}{x+1}=\dfrac{x+1}{324}\)
\(\Rightarrow\)(x+1).(x+1)=324
\(\Rightarrow\)(x+1)2=324
\(\Rightarrow\)(x+1)2 = 182 = (-18)2
TH1: (x+1)2 = 182
\(\Rightarrow\)x+1 = 18
\(\Rightarrow\)x = 17
TH2: (x+1)2 = (-18)2
\(\Rightarrow\)x+1 = -18
\(\Rightarrow\)x = -19
Vậy x\(\in\)\(\left\{17;-19\right\}\)
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{n.\left(n+1\right)}=\dfrac{3}{10}\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{n}-\dfrac{1}{n+1}=\dfrac{3}{10}\)
\(\Rightarrow\dfrac{1}{3}-\dfrac{1}{n+1}=\dfrac{3}{10}\)
\(\Rightarrow\dfrac{1}{n+1}=\dfrac{1}{30}\)
\(\Rightarrow n+1=30\)
\(\Rightarrow n=29\)
Vậy n = 29.
Ta có:
\(\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}=1-\dfrac{1}{10}=\dfrac{9}{10}\)
\(\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{200.201}\)
=\(\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{200}-\dfrac{1}{201}\)
=\(\dfrac{1}{3}-\dfrac{1}{201}\)
=\(\dfrac{67}{201}-\dfrac{1}{201}\)
=\(\dfrac{66}{201}\)
---Học Tốt Nha---
sai rùi