Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+8}+\dfrac{1}{x+8}-\dfrac{1}{x+14}=\dfrac{x}{\left(x+2\right)\left(x+14\right)}\)
\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+14\right)}=\dfrac{x+14-x-2}{\left(x+2\right)\left(x+14\right)}=\dfrac{12}{\left(x+2\right)\left(x+14\right)}\)
=>x=12
Lời giải:
Điều kiện: $x\neq -2; x\neq -2; x\neq -8; x\neq -14$
Đề bài
$\Rightarrow \frac{(x+4)-(x+2)}{(x+2)(x+4)}+\frac{(x+8)-(x+4)}{(x+4)(x+8)}+\frac{(x+14)-(x+8)}{(x+8)(x+14)}=\frac{x}{(x+2)(x+14)}$
$\Rightarrow \frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}$
$\Rightarrow \frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}$
$\Rightarrow \frac{12}{(x+2)(x+14)}=\frac{x}{(x+2)(x+14)}$
$\Rightarrow 12=x$ (thỏa mãn)
a/
\(VT=\dfrac{\left(x+4\right)-\left(x+2\right)}{\left(x+2\right)\left(x+4\right)}+\dfrac{\left(x+8\right)-\left(x+4\right)}{\left(x+4\right)\left(x+8\right)}+\dfrac{\left(x+14\right)-\left(x+8\right)}{\left(x+8\right)\left(x+14\right)}=\)
\(=\dfrac{1}{x+2}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+8}+\dfrac{1}{x+8}-\dfrac{1}{x+14}=\)
\(=\dfrac{1}{x+2}-\dfrac{1}{x+14}=\dfrac{12}{\left(x+2\right)\left(x+14\right)}\)
\(\Rightarrow\dfrac{12}{\left(x+2\right)\left(x+14\right)}=\dfrac{x}{\left(x+2\right)\left(x+14\right)}\left(x\ne-2;x\ne-14\right)\)
\(\Rightarrow x=12\)
\(\dfrac{x}{2023}+\dfrac{x+1}{2022}+...+\dfrac{x+2022}{1}+2023=0\)
\(\dfrac{1}{2023}x+\dfrac{1}{2022}x+\dfrac{1}{2022}\cdot1+...+\dfrac{1}{1}x+\dfrac{1}{1}\cdot2022+2023=0\)
\(x\left(\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}\right)+\left(\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023\right)=0\)
\(x\left(\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}\right)=\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023\)
\(x=\dfrac{\dfrac{1}{2022}+\dfrac{2}{2021}+...+\dfrac{2022}{1}+2023}{\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}}\)
\(x=\dfrac{\dfrac{1}{2022}+\dfrac{2022}{2022}+\dfrac{2}{2021}+\dfrac{2021}{2021}+...+\dfrac{2022}{1}+\dfrac{1}{1}}{\dfrac{1}{2023}+\dfrac{1}{2022}+...+\dfrac{1}{1}}\)
\(x=\dfrac{\dfrac{2023}{2022}+\dfrac{2023}{2021}+...+\dfrac{2023}{1}}{\dfrac{1}{2022}+\dfrac{1}{2021}+...+\dfrac{1}{1}}=2023\)
Vậy x = 2023
Lời giải:
PT \(\Leftrightarrow \frac{(x+4)-(x+2)}{(x+2)(x+4)}+\frac{(x+8)-(x+4)}{(x+4)(x+8)}+\frac{(x+14)-(x+8)}{(x+8)(x+14)}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{12}{(x+2)(x+14)}=\frac{x}{(x+2)(x+14)}\)
\(\Rightarrow x=12\) (thỏa mãn)
Vậy......
\(...\Rightarrow\dfrac{20\left(x+2\right)}{360}+\dfrac{45\left(x+4\right)}{360}+\dfrac{72\left(x+5\right)}{360}=\dfrac{360\left(x+14\right)}{360}\)
\(\Rightarrow20\left(x+2\right)+45\left(x+4\right)+72\left(x+5\right)=360\left(x+14\right)\)
\(\Rightarrow20x+40+45x+180+72x+360=360x+5040\)
\(\Rightarrow137x+580=360x+5040\)
\(\Rightarrow360x-137x=5040-580\)
\(\Rightarrow223x=4460\Rightarrow x=4460:223=\dfrac{4460}{223}\)
\(\dfrac{1}{4}\cdot\dfrac{2}{6}\cdot\dfrac{3}{8}\cdot\dfrac{4}{10}\cdot...\cdot\dfrac{14}{30}.\dfrac{15}{32}=\dfrac{1}{2^x}\)
\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot14\cdot15}{4\cdot6\cdot8\cdot10\cdot...\cdot30\cdot32}=\dfrac{1}{2^x}\)
\(\Rightarrow\dfrac{1\cdot2\cdot3\cdot4\cdot...\cdot14\cdot15}{2\cdot4\cdot6\cdot8\cdot10\cdot...\cdot30\cdot32}=\dfrac{1}{2^{x+1}}\)
\(\Rightarrow\dfrac{1}{2^{15}\cdot32}=\dfrac{1}{2^{x+1}}\)
\(\Rightarrow2^{15}.2^5=2^{x+1}\)
\(\Rightarrow2^{20}=2^{x+1}\)
\(\Rightarrow x+1=20\Rightarrow x=19\)
Vậy x = 19.
\(a,3-x=x+1,8\)
\(\Rightarrow-x-x=1,8-3\)
\(\Rightarrow-2x=-1,2\)
\(\Rightarrow x=0,6\)
\(b,2x-5=7x+35\)
\(\Rightarrow2x-7x=35+5\)
\(\Rightarrow-5x=40\)
\(\Rightarrow x=-8\)
\(c,2\left(x+10\right)=3\left(x-6\right)\)
\(\Rightarrow2x+20=3x-18\)
\(\Rightarrow2x-3x=-18-20\)
\(\Rightarrow-x=-38\)
\(\Rightarrow x=38\)
\(d,8\left(x-\dfrac{3}{8}\right)+1=6\left(\dfrac{1}{6}+x\right)+x\)
\(\Rightarrow8x-3+1=1+6x+x\)
\(\Rightarrow8x-3=7x\)
\(\Rightarrow8x-7x=3\)
\(\Rightarrow x=3\)
\(e,\dfrac{2}{9}-3x=\dfrac{4}{3}-x\)
\(\Rightarrow-3x+x=\dfrac{4}{3}-\dfrac{2}{9}\)
\(\Rightarrow-2x=\dfrac{10}{9}\)
\(\Rightarrow x=-\dfrac{5}{9}\)
\(g,\dfrac{1}{2}x+\dfrac{5}{6}=\dfrac{3}{4}x-\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}x-\dfrac{3}{4}x=-\dfrac{1}{2}-\dfrac{5}{6}\)
\(\Rightarrow-\dfrac{1}{4}x=-\dfrac{4}{3}\)
\(\Rightarrow x=\dfrac{16}{3}\)
\(h,x-4=\dfrac{5}{6}\left(6-\dfrac{6}{5}x\right)\)
\(\Rightarrow x-4=5-x\)
\(\Rightarrow x+x=5+4\)
\(\Rightarrow2x=9\)
\(\Rightarrow x=\dfrac{9}{2}\)
\(k,7x^2-11=6x^2-2\)
\(\Rightarrow7x^2-6x^2=-2+11\)
\(\Rightarrow x^2=9\Rightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
\(m,5\left(x+3\cdot2^3\right)=10^2\)
\(\Rightarrow5\left(x+24\right)=100\)
\(\Rightarrow x+24=20\)
\(\Rightarrow x=-4\)
\(n,\dfrac{4}{9}-\left(\dfrac{1}{6^2}\right)=\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{4}{9}-\dfrac{1}{36}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2+\dfrac{5}{12}=\dfrac{5}{12}\)
\(\Rightarrow\dfrac{2}{3}\left(x-\dfrac{2}{3}\right)^2=0\)
\(\Rightarrow x-\dfrac{2}{3}=0\Rightarrow x=\dfrac{2}{3}\)
#\(Urushi\text{☕}\)
\(a,x^2=16\)
\(x^2=4^2=\left(-4\right)^2\)
\(x=2\) hoặc \(x=-2\)
\(b,x^3=-8\)
\(x^3=\left(-2\right)^3\)
\(x=-2\)
\(c,\left(x+2\right)^2=4\)
\(\left(x+2\right)^2=2^2=\left(-2\right)^2\)
\(x+2=2\Rightarrow x=0\) hoặc \(x+2=-2\Rightarrow x=-4\)
\(d,\left(1-x\right)^3=1\)
\(1-x=1\)
\(x=0\)
e,phần này mk chưa nghĩ ra,sorry bn nha!
No biết