Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\frac{1}{56\times61}+\frac{1}{61\times66}\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\frac{5}{66}\)
\(=\frac{1}{66}\)
\(\frac{1}{11\times16}+\frac{1}{16\times21}+\frac{1}{21\times26}+...+\frac{1}{56\times61}+\frac{1}{61\times66}\)
\(=\frac{1}{5}\times\left(\frac{5}{11\times16}+\frac{5}{16\times21}+\frac{5}{21\times26}+...+\frac{5}{56\times61}+\frac{5}{61\times66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+\frac{1}{21}-\frac{1}{26}+...+\frac{1}{56}-\frac{1}{61}+\frac{1}{61}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\left(\frac{1}{11}-\frac{1}{66}\right)\)
\(=\frac{1}{5}\times\frac{5}{66}=\frac{1}{66}\)
`@` `\text {Ans}`
`\downarrow`
\(\text{ A = }\dfrac{1}{4\times8}+\dfrac{1}{8\times12}+\dfrac{1}{12\times16}+...+\dfrac{1}{172\times176}\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{4}{4\times8}+\dfrac{4}{12\times16}+...+\dfrac{4}{172\times176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{1}{4}-\dfrac{1}{8}+\dfrac{1}{12}-\dfrac{1}{16}+...+\dfrac{1}{172}-\dfrac{1}{176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\left(\dfrac{1}{4}-\dfrac{1}{176}\right)\)
\(\text{A = }\dfrac{1}{4}\times\dfrac{43}{176}\)
\(\text{A = }\dfrac{43}{704}\)
Đáp số: `\text {A =} 43/704.`
A = 1/4 x 8 + 1/8 x 12 + 1/12 x 16 + ... + 1/176 x 180
=> 4A = 4/4 x 8 + 4/8 x 12 + 4/12 x 16 + ... + 4/176 x 180
=> 4A = 1/4 - 1/8 + 1/8 - 1/12 + 1/12 - 1/16 + ... 1/176 - 1/180
=> 4A = 1/4 - 1/180
=> 4A = 45/180 - 1/180
=> 4A = 44/180
=> 4A = 11/45
=> A = 11/45 : 4
=> A = 11/180
Vậy A = 11/180
A = \(\dfrac{1}{4\times8}\) + \(\dfrac{1}{8\times12}\) + \(\dfrac{1}{12\times16}\) +...+ \(\dfrac{1}{176\times180}\)
A = \(\dfrac{1}{4}\) \(\times\)( \(\dfrac{4}{4\times8}\)+ \(\dfrac{4}{12\times16}\)+...+ \(\dfrac{4}{176\times180}\))
A = \(\dfrac{1}{4}\) \(\times\)( \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) + \(\dfrac{1}{12}\) - \(\dfrac{1}{16}\) +...+ \(\dfrac{1}{176}\) - \(\dfrac{1}{180}\))
A = \(\dfrac{1}{4}\) \(\times\)(\(\dfrac{1}{4}\) - \(\dfrac{1}{180}\))
A = \(\dfrac{1}{4}\) \(\times\)\(\dfrac{11}{45}\)
A = \(\dfrac{11}{180}\)
Bài 1 :
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(S=\frac{1}{1}-\frac{1}{2011}=\frac{2010}{2011}\)
Bài 2 :
\(S=\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}+\frac{1}{16}-\frac{1}{19}+...+\frac{1}{58}-\frac{1}{61}\)
\(S=\frac{1}{10}-\frac{1}{61}=\frac{51}{610}\)
Bài 3 :
\(3S=\frac{3}{4\times7}+\frac{3}{7\times11}+...+\frac{3}{19\times22}\)
\(3S=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{11}+...+\frac{1}{19}-\frac{1}{22}\)
\(3S=\frac{1}{4}-\frac{1}{22}\)
\(S=\frac{18}{88}\div3=\frac{6}{88}\)
\(A=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{25.125}\)
\(A=\frac{1}{100}.\left(1-\frac{1}{101}\right)+\frac{1}{100}.\left(\frac{1}{2}-\frac{1}{102}\right)+\frac{1}{100}.\left(\frac{1}{3}-\frac{1}{103}\right)+...+\frac{1}{100}.\left(\frac{1}{25}-\frac{1}{125}\right)\)
\(A=\frac{1}{100}.\left(1-\frac{1}{101}+\frac{1}{2}-\frac{1}{102}+\frac{1}{3}-\frac{1}{103}+...+\frac{1}{25}-\frac{1}{125}\right)\)
\(A=\frac{1}{100}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)\)
\(B=\frac{1}{1.26}+\frac{1}{2.27}+\frac{1}{3.28}+...+\frac{1}{100.125}\)
\(B=\frac{1}{25}.\left(1-\frac{1}{26}\right)+\frac{1}{25}.\left(\frac{1}{2}-\frac{1}{27}\right)+\frac{1}{25}.\left(\frac{1}{3}-\frac{1}{28}\right)+...+\frac{1}{25}.\left(\frac{1}{100}-\frac{1}{125}\right)\)
\(B=\frac{1}{25}.\left(1-\frac{1}{26}+\frac{1}{2}-\frac{1}{27}+\frac{1}{3}-\frac{1}{28}+...+\frac{1}{100}-\frac{1}{125}\right)\)
\(B=\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-\frac{1}{28}-...-\frac{1}{125}\right)\)
\(B=\frac{1}{25}.\left(1+\frac{1}{2}+...+\frac{1}{25}+\frac{1}{26}+\frac{1}{27}+...+\frac{1}{100}-\frac{1}{26}-\frac{1}{27}-...-\frac{1}{100}-\frac{1}{101}-...-\frac{1}{125}\right)\)\(B=\frac{1}{25}.\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}-\frac{1}{101}-\frac{1}{102}-\frac{1}{103}-...-\frac{1}{125}\right)\)
Ta thấy biểu thức trong ngoặc của hai vế A và B giống nhau
Vậy A : B = \(\frac{1}{100}:\frac{1}{25}=\frac{1}{4}\)
\(A=\frac{1}{1.101}+\frac{1}{2.102}+\frac{1}{3.103}+...+\frac{1}{25.125}\)
\(\Rightarrow A=\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{24.25}\right)+\left(\frac{1}{101.102}+\frac{1}{102.103}+...+\frac{1}{124.125}\right)\)
\(A=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{24}-\frac{1}{25}\right)+\left(\frac{1}{101}-\frac{1}{102}+\frac{1}{102}-\frac{1}{103}+...+\frac{1}{124}-\frac{1}{125}\right)\)
\(A=\left(1-\frac{1}{25}\right)+\left(\frac{1}{101}-\frac{1}{125}\right)\)
\(A=\frac{24}{25}+\frac{24}{12625}\)
Bạn tự tính luôn nha trog máy tính của mình là : 0,961... ( k làm thành phân số được )
Ta có : \(\frac{1}{4}+\frac{1}{3}:\frac{1}{x}=\frac{11}{12}\)
\(\Rightarrow\frac{1}{3}:\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)
\(\frac{1}{3}:\frac{1}{x}=\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}:\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}\times\frac{3}{2}\)
\(\frac{1}{x}=\frac{1}{2}\)
=> x = 2
a) \(\frac{x\div3-16}{2}+21=38\)
\(\frac{x\div3-16}{2}=38+21\)
\(\frac{x\div3-16}{2}=59\)
\(x\div3-16=59.2\)
\(x\div3-16=118\)
\(x\div3=118+16\)
\(x\div3=134\)
\(x=134.3\)
\(x=402\)
b) \(\frac{1}{4}+\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}\)
\(\frac{1}{3}\div\frac{1}{x}=\frac{11}{12}-\frac{1}{4}\)
\(\frac{1}{3}\div\frac{1}{x}=\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{3}\div\frac{2}{3}\)
\(\frac{1}{x}=\frac{1}{2}\)
Vậy x = ....
Dấu " . " là dấu nhân
\(\frac{16\cdot17-5}{16\cdot16+11}\)
\(=\frac{16\cdot\left(16+1\right)-5}{16^2+11}\)
\(=\frac{16^2+16-5}{16^2+11}\)
\(=\frac{16^2+11}{16^2+11}\)
\(=1\)
\(A=\frac{10-1\frac{1}{6}.\frac{6}{7}}{21:\frac{11}{2}+5\frac{2}{11}}=\frac{10-\frac{7}{6}.\frac{6}{7}}{\frac{21.2}{11}+\frac{57}{11}}=\frac{10-1}{\frac{42}{11}+\frac{57}{11}}=\frac{9}{9}=1\)
đặt A= dãy số trên.Ta có:
5A= \(\frac{5}{11x16}+\frac{5}{16x21}+...+\frac{5}{61x66}\)
=> 5A= \(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+...+\frac{1}{61}-\frac{1}{66}\)
=> 5A = \(\frac{1}{11}-\frac{1}{66}\)
=> 5A= \(\frac{5}{66}\)
=> A=\(\frac{1}{66}\)
\(=\frac{1}{5}\left(\frac{5}{11.16}\frac{5}{16.21}\frac{5}{21.26}+......+\frac{5}{61.66}\right)\)
\(=\frac{1}{5}\left(\frac{1}{11}-\frac{1}{16}+\frac{1}{16}-\frac{1}{21}+....+\frac{1}{61}+\frac{1}{66}\right)\)
=\(\frac{1}{5}\left(\frac{1}{11}+\frac{1}{66}\right)\)
\(=\frac{1}{5}.\frac{7}{66}\)
\(=\frac{7}{330}\)