Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+2+2^2+...+2^{30}\)
\(\Rightarrow2A=2+2^2+2^3+...+2^{31}\)
\(\Rightarrow2A-A=A=2^{31}-1\)
\(\Rightarrow A+1=2^{30}\)
A = 5 + 5^2 + 5^3 + ...+ 5^11
=> 5A = 5^2 + 5^3 + 5^4 + ...+ 5^12
5A - A = 5^12 - 5
\(A=\frac{5^{12}-5}{4}\)
Vì |(x-1)^4-1|\(\ge\)0 với mọi x
(-y^2+3)^2\(\ge\)0 với mọi y
=>...+...\(\ge0\)
Dấu ''='' xảy ra <=>\(\int^{\left(x-1\right)^4-1=0}_{-y^2+3=0}<=>\int^{\left(x-1\right)^4=1}_{y^2=3}\)
Đến đây thì bạn tự giải tiếp nha.OK
4. a. A = -a + b - c + a + b + c = 2b
b. Thay b = -1 vào A => A = 2.(-1) = -2
5. a. = (1-2) + (3-4) + (5-6) + ... + (99-100) (có tất cả 50 cặp)
= -1 + (-1) + ... + (-1)
= -1.50
= -50
b. = (4-2) + (8-6) + ... + (2016 - 2014) ( có tất cả 504 cặp )
= 2 + 2 + ... + 2
= 2.504
= 1008
4) a) A=(-a+b-c)-(-a-b-c)=-a+b-c+a+b+c=(-a+a)+(b+b)+(-c+c)=0+2b+0=2b
5)a) -50
b) 1008
a/
$(x+1)+(x+2)+...+(x+100)=5750$
$(x+x+....+x)+(1+2+....+100)=5750$
Số lần xuất hiện của $x$:
$(100-1):1+1=100$
Suy ra:
$100x+(1+2+3+....+100)=5750$
$100x+100.101:2=5750$
$100x+5050=5750$
$100x=700$
$x=700:100$
$x=7$
b/
$x^2y-x+xy=6$
$x(xy-1+y)=6$
Do $x,y$ nguyên nên $xy-1+y$ cũng là số nguyên. Mà tích $x(xy-1+y)=6$ nên ta có các TH sau:
TH1: $x=1, xy-1+y=6$
$\Rightarrow y-1+y=6\Rightarrow y=\frac{7}{2}$ (loại)
TH2: $x=-1, xy-1+y=-6$
$\Rightarrow -y-1+y=-6\Rightarrow -1=-6$ (vô lý - loại)
TH3: $x=2, xy-1+y=3$
$\Rightarrow 2y-1+y=3\Rightarrow 3y=4\Rightarrow y=\frac{4}{3}$ (loại)
TH4: $x=-2, xy-1+y=-3$
$\Rightarrow -2y-1+y=-3$
$\Rightarrow -y-1=-3\Rightarrow y=2$ (tm)
TH5: $x=3, xy-1+y=2\Rightarrow 3y-1+y=2$
$\Rightarrow 4y=3\Rightarrow y=\frac{3}{4}$ (loại)
TH6: $x=-3, xy-1+y=-2\Rightarrow -3y-1+y=-2$
$\Rightarrow -2y=-1\Rightarrow y=\frac{1}{2}$ (loại)
TH7: $x=6, xy-1+y=1$
$\Rightarrow 6y-1+y=1\Rightarrow 7y=2\Rightarrow y=\frac{2}{7}$ (loại)
TH8: $x=-6, xy-1+y=-1$
$\Rightarrow -6y-1+y=-1$
$\Rightarrow -5y=0\Rightarrow y=0$ (tm)
\(a=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{101}{100}=\frac{101}{2}\)