K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2017

1. Ta có \(\left(x+2\right)\left(x+4\right)\left(x+6\right)\left(x+8\right)+16=0\)

\(\Rightarrow\)\(\left[\left(x+2\right)\left(x+8\right)\right].\left[\left(x+4\right)\left(x+6\right)\right]+16=0\)

\(\Rightarrow\left(x^2+10x+16\right)\left(x^2+10x+24\right)+16=0\)

Đặt \(x^2+10x=t\)

Pt \(\Leftrightarrow\left(t+16\right)\left(t+24\right)+16=0\Leftrightarrow t^2+40t+400=0\Leftrightarrow t=-20\)

\(\Rightarrow x^2+10x+20=0\Rightarrow\orbr{\begin{cases}x=-5+\sqrt{5}\\x=-5-\sqrt{5}\end{cases}}\)

2. Ta có \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24=0\)

\(\Rightarrow\left[\left(x+2\right)\left(x+5\right)\right].\left[\left(x+3\right)\left(x+4\right)\right]-24=0\)\(\Rightarrow\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24=0\)

Đặt \(x^2+7x=t\Rightarrow\left(t+10\right)\left(t+12\right)-24=0\Rightarrow t^2+22t+96=0\)\(\Rightarrow\orbr{\begin{cases}t=-6\\t=-16\end{cases}}\)

Với \(t=-6\Rightarrow x^2+7x+6=0\Rightarrow\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)

Với \(t=-16\Rightarrow x^2+7x+16=0\left(l\right)\)

Vậy pt có 2 nghiệm là \(\orbr{\begin{cases}x=-6\\x=-1\end{cases}}\)

18 tháng 7 2017

Quản lí Hoàng Thị Lan Hương giúp em giải bài toán vừa đăng lên đc ko ạ.??? ^^

1: Ta có: \(2x\left(x+3\right)-6\left(x-3\right)=0\)

\(\Leftrightarrow2x^2+6x-6x+18=0\)

\(\Leftrightarrow2x^2+18=0\left(loại\right)\)

2: Ta có: \(2x^2\left(2x+3\right)+\left(2x+3\right)=0\)

\(\Leftrightarrow2x+3=0\)

hay \(x=-\dfrac{3}{2}\)

3: Ta có: \(\left(x-2\right)\left(x+1\right)-4x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(1-3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

4: Ta có: \(2x\left(x-5\right)-3x+15=0\)

\(\Leftrightarrow\left(x-5\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

5: Ta có: \(3x\left(x+4\right)-2x-8=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=\dfrac{2}{3}\end{matrix}\right.\)

6: Ta có: \(x^2\left(2x-6\right)+2x-6=0\)

\(\Leftrightarrow2x-6=0\)

hay x=3

AH
Akai Haruma
Giáo viên
7 tháng 3 2023

Bạn cần viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) đẻ được hỗ trợ tốt hơn. Viết như thế kia rất khó đọc => khả năng bị bỏ qua bài cao.

a: =>3x=3

=>x=1

b: =>12x-2(5x-1)=3(8-3x)

=>12x-10x+2=24-9x

=>2x+2=24-9x

=>11x=22

=>x=2

c: =>2x-3(2x+1)=x-6x

=>-5x=2x-6x-3=-4x-3

=>-x=-3

=>x=3

d: =>2x-5=0 hoặc x+3=0

=>x=5/2 hoặc x=-3

e: =>x+2=0

=>x=-2

12 tháng 4 2022

\(a,\dfrac{x-3}{x}=\dfrac{x-3}{x+3}\)\(\left(đk:x\ne0,-3\right)\)

\(\Leftrightarrow\dfrac{x-3}{x}-\dfrac{x-3}{x+3}=0\)

\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+3\right)-x\left(x-3\right)}{x\left(x+3\right)}=0\)

\(\Leftrightarrow x^2-9-x^2+3x=0\)

\(\Leftrightarrow3x-9=0\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\left(n\right)\)

Vậy \(S=\left\{3\right\}\)

12 tháng 4 2022

\(b,\dfrac{4x-3}{4}>\dfrac{3x-5}{3}-\dfrac{2x-7}{12}\)

\(\Leftrightarrow\dfrac{4x-3}{4}-\dfrac{3x-5}{3}+\dfrac{2x-7}{12}>0\)

\(\Leftrightarrow\dfrac{3\left(4x-3\right)-4\left(3x-5\right)+2x-7}{12}>0\)

\(\Leftrightarrow12x-9-12x+20+2x-7>0\)

\(\Leftrightarrow2x+4>0\)

\(\Leftrightarrow2x>-4\)

\(\Leftrightarrow x>-2\)

11 tháng 3 2020

a) ( 4x - 1 ) (x - 3) - ( x - 3 ) ( 5x + 2 ) = 0 

<=>  (x - 3)(4x - 1 - 5x - 2) = 0

<=>  (x - 3)(-x - 3) = 0

<=>  x  = 3 hoặc x = -3

b) ( x + 3 ) ( x - 5 ) + ( x + 3 ) ( 3x - 4) = 0 

<=>  (x + 3)(x - 5 + 3x - 4) = 0

<=>  (x + 3)(4x - 9) = 0

<=>  x = -3 hoặc x = 9/4

c) ( x + 6 ) ( 3x - 1 )+ x2 - 36 = 0 

<=>  3x^2 + 17x - 6 + x^2 - 36 = 0

<=>  4x^2 + 17x - 42 = 0

<=>  4x^2 + 24x - 7x - 42 = 0

<=>  4x(x + 6) - 7(x + 6) = 0

<=>  (4x - 7)(x + 6) = 0

<=>  x = -6 hoặc x = 7/4

d) ( x + 4 ) ( 5x + 9 ) - x+ 16 = 0 

<=>  5x^2 + 29x + 36 - x^2 + 16 = 0

<=>  4x^2 + 29x + 52 = 0

<=>  4x^2 + 16x + 13x + 42 = 0

<=>  4x(x + 4) + 13(x + 4) = 0

<=>  (4x + 13)(x + 4) = 0

<=>  x = -13/4 và x = -4

24 tháng 3 2020

a) 7x - 35 = 0

<=> 7x = 0 + 35

<=> 7x = 35

<=> x = 5

b) 4x - x - 18 = 0

<=> 3x - 18 = 0

<=> 3x = 0 + 18

<=> 3x = 18

<=> x = 5

c) x - 6 = 8 - x

<=> x - 6 + x = 8

<=> 2x - 6 = 8

<=> 2x = 8 + 6

<=> 2x = 14

<=> x = 7

d) 48 - 5x = 39 - 2x

<=> 48 - 5x + 2x = 39

<=> 48 - 3x = 39

<=> -3x = 39 - 48

<=> -3x = -9

<=> x = 3

19 tháng 5 2021

có bị viết nhầm thì thông cảm nha!

30 tháng 1 2016

1)\(\Leftrightarrow2x^2+3x-14=0\)

\(\Rightarrow3^2-\left(-4\left(2.14\right)\right)=121\)

\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{D}}{2a}=\frac{-3+-\sqrt{121}}{4}\)

=>\(x=2hoặc-\frac{7}{2}\)

tối nay tôi làm tiếp cho

30 tháng 1 2016

đây đâu phải là câu trả lời mà mk muốn hỏi

5 tháng 2 2022

TK

https://lazi.vn/edu/exercise/giai-phuong-trinh-4x-5-x-1-2-x-x-1-7-x-2-3-x-5

a: \(\Leftrightarrow4x-5=2x-2+x\)

=>4x-5=3x-2

=>x=3(nhận)

b: =>7x-35=3x+6

=>4x=41

hay x=41/4(nhận)

c: \(\Leftrightarrow\dfrac{14}{3\left(x-4\right)}-\dfrac{x+2}{x-4}=\dfrac{-3}{2\left(x-4\right)}-\dfrac{5}{6}\)

\(\Leftrightarrow\dfrac{28}{6\left(x-4\right)}-\dfrac{6\left(x+2\right)}{6\left(x-4\right)}=\dfrac{-9}{6\left(x-4\right)}-\dfrac{5\left(x-4\right)}{6\left(x-4\right)}\)

\(\Leftrightarrow28-6x-12=-9-5x+20\)

=>-6x+16=-5x+11

=>-x=-5

hay x=5(nhận)

d: \(\Leftrightarrow x^2+2x+1-\left(x^2-2x+1\right)=16\)

\(\Leftrightarrow4x=16\)

hay x=4(nhận)

12 tháng 8 2021

1/ ( x-1) (2x+1) =0

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=-0,5\end{matrix}\right.\)

2/ x (2x-1) (3x+15) =0

\(\Rightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=0,5\\x=-5\end{matrix}\right.\)

3/ (2x-6) (3x+4).x=0

\(\Rightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)

4/ (2x-10)(x2+1)=0

\(\Rightarrow\left[{}\begin{matrix}2x-10=0\\x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=5\\x^2=-1\left(loại\right)\end{matrix}\right.\)

5/ (x2+3) (2x-1) =0

\(\Rightarrow\left[{}\begin{matrix}x^2+3=0\\2x-1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x^2=-3\left(loại\right)\\x=0,5\end{matrix}\right.\)

6/ (3x-1) (2x2 +1)=0

\(\Rightarrow\left[{}\begin{matrix}3x-1=0\\2x^2+1=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x^2=-0,5\left(loại\right)\end{matrix}\right.\)

 

1: Ta có: \(\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{2}\end{matrix}\right.\)

2: Ta có: \(x\left(2x-1\right)\left(3x+15\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x-1=0\\3x+15=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-5\end{matrix}\right.\)

3: Ta có: \(\left(2x-6\right)\left(3x+4\right)x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\3x+4=0\\x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{4}{3}\\x=0\end{matrix}\right.\)