K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
14 tháng 5 2021

Lời giải:

Vì $|x+4|, |x+5|\geq 0$ với mọi $x\in\mathbb{R}$ nên:

$2x=|x+4|+|x+5|\geq 0$

$\Rightarrow x\geq 0$

$\Rightarrow |x+4|=x+4; |x+5|=x+5$. Do đó, pt trở thành:

$x+4+x+5=2x$

$\Leftrightarrow 0=9$ (vô lý)

Vậy pt vô nghiệm.

b)

Ta có: 

$2x=|x+4|+|x+5|+...+|x+10|\geq 0$

$\Rightarrow x\geq 0$

$\Rightarrow |x+4|=x+4; |x+5|=x+5; ....;|x+10|=x+10$

Do đó pt trở thành:

$2x=(x+4)+(x+5)+...+(x+10)$

$2x=7x+49$

$x=\frac{-49}{5}<0$ (vô lý vì $x\geq 0$)

Vậy PT vô nghiệm.

18 tháng 1 2022

\(\text{2x - (x - 3)(5 - x) = (x+4)}^2.\)

\(\Leftrightarrow2x-\left(5x-x^2-15+3x\right)=x^2+8x+16.\)

\(\Leftrightarrow2x-5x+x^2+15-3x-x^2-8x-16=0.\)

\(\Leftrightarrow-14x-1=0.\Leftrightarrow x=\dfrac{-1}{14}.\)

\(\text{(4x + 1)(x - 2) + 25 = (2x+3)}^2-4x.\)

\(\Leftrightarrow4x^2-8x+x-2+25=4x^2+12x+9-4x.\)

\(\Leftrightarrow-15x+14=0.\Leftrightarrow x=\dfrac{14}{15}.\)

28 tháng 4 2022

a, 4x+1=13-2x <-->6x=12 <-->x=2

b, (2x-5)(x-4)=0 <-->x=5/2  hoặc x=4

c,Đề bài -->x(x-2)+6(x+2)=2x+12 -->x^2+2x=0 -->x=0  hoặc x=-2

d,|x-3|=9-2x -->TH1: x-3=9-2x -->x=x=4           TH2:3-x=9-2x -->x=6

 
6 tháng 3 2021

a) \(\left(x-2\right)^2=\left(x-4\right)\left(x+4\right)\) 

\(\Leftrightarrow x^2-4x+4-x^2+16=0\)

\(\Leftrightarrow20-4x=0\)

\(\Leftrightarrow4x=20\)

\(\Leftrightarrow x=5\)

Vậy S = {5}

b) ĐKXĐ: \(x\ne0;x\ne-2\)

\(\dfrac{x+2}{x}=\dfrac{\left(x+1\right)\left(x+4\right)}{x^2+2x}+\dfrac{x}{x+2}\)

\(\Leftrightarrow\dfrac{x+2}{x}=\dfrac{x^2+4x+x+4+x^2}{x\left(x+2\right)}\)

\(\Leftrightarrow\dfrac{x+2}{x}=\dfrac{2x^2+5x+4}{x\left(x+2\right)}\)

\(\Rightarrow x\left(x+2\right)^2=x\left(2x^2+5x+4\right)\)

\(\Leftrightarrow x^3+4x^2+4x=2x^3+5x^2+4x\)

\(\Leftrightarrow x^3+x^2=0\)

\(\Leftrightarrow x^2\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x+1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x=-1\left(TM\right)\end{matrix}\right.\)

Vậy S = {-1}

c) Câu này mình không chắc về đề lắm! Bạn dùng ô chữ M bị ngược để viết lại đề nhé!

a) Ta có: \(\left(x-2\right)^2=\left(x-4\right)\left(x+4\right)\)

\(\Leftrightarrow x^2-4x+4=x^2-16\)

\(\Leftrightarrow x^2-4x+4-x^2+16=0\)

\(\Leftrightarrow-4x+20=0\)

\(\Leftrightarrow-4x=-20\)

hay x=5

Vậy: S={5}

b: =>1/4x+4/5-x-5=1/3x+1-1/2x+1

=>-3/4x+1/6x=2+5-4/5=24/5

=>x=-288/35

c: =>6x^2+3x-30x-15=6x^2+10x-21x-35

=>-27x-15=-11x-35

=>-16x=-20

=>x=5/4

 

9 tháng 6 2021

a) \(2\chi-3=3\left(\chi+1\right)\)

\(\Leftrightarrow2\chi-3=3\chi+3\)

\(\Leftrightarrow2\chi-3\chi=3+3\)

\(\Leftrightarrow\chi=-6\)

Vậy phương trình có tập nghiệm S= \(\left\{-6\right\}\)

\(3\chi-3=2\left(\chi+1\right)\)

\(\Leftrightarrow3\chi-3=2\chi+2\)

\(\Leftrightarrow3\chi-2\chi=2+3\)

\(\Leftrightarrow\chi=5\)

Vậy phương trình có tập nghiệm S= \(\left\{5\right\}\)

b) \(\left(3\chi+2\right)\left(4\chi-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+2=0\\4\chi-5=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-2\\4\chi=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-2}{3}\\\chi=\dfrac{5}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-2}{3};\dfrac{5}{4}\right\}\)

\(\left(3\chi+5\right)\left(4\chi-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi+5=0\\4\chi-2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}3\chi=-5\\4\chi=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\chi=\dfrac{-5}{3}\\\chi=\dfrac{1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S= \(\left\{\dfrac{-5}{3};\dfrac{1}{2}\right\}\)

c) \(\left|\chi-7\right|=2\chi+3\)

Trường hợp 1: 

Nếu \(\chi-7\ge0\Leftrightarrow\chi\ge7\)

Khi đó:\(\left|\chi-7\right|=2\chi+3\)

 \(\Leftrightarrow\chi-7=2\chi+3\)

\(\Leftrightarrow\chi-2\chi=3+7\)

\(\Leftrightarrow\chi=-10\) (KTMĐK)

Trường hợp 2:

Nếu \(\chi-7\le0\Leftrightarrow\chi\le7\)

Khi đó: \(\left|\chi-7\right|=2\chi+3\)

\(\Leftrightarrow-\chi+7=2\chi+3\)

\(\Leftrightarrow-\chi-2\chi=3-7\)

\(\Leftrightarrow-3\chi=-4\)

\(\Leftrightarrow\chi=\dfrac{4}{3}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{4}{3}\right\}\)

\(\left|\chi-4\right|=5-3\chi\)

Trường hợp 1:  

Nếu \(\chi-4\ge0\Leftrightarrow\chi\ge4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow\chi-4=5-3\chi\)

\(\Leftrightarrow\chi+3\chi=5+4\)

\(\Leftrightarrow4\chi=9\)

\(\Leftrightarrow\chi=\dfrac{9}{4}\)(KTMĐK)

Trường hợp 2: Nếu \(\chi-4\le0\Leftrightarrow\chi\le4\)

Khi đó: \(\left|\chi-4\right|=5-3\chi\)

\(\Leftrightarrow-\chi+4=5-3\chi\)

\(\Leftrightarrow-\chi+3\chi=5-4\)

\(\Leftrightarrow2\chi=1\)

\(\Leftrightarrow\chi=\dfrac{1}{2}\)(TMĐK)

Vậy phương trình có tập nghiệm S=\(\left\{\dfrac{1}{2}\right\}\)

 

 

 

 

b: \(\Leftrightarrow\dfrac{-3x^2+36x+12}{3\left(x+4\right)\left(x-1\right)}=\dfrac{36\left(x-1\right)}{3\left(x+4\right)\left(x-1\right)}+\dfrac{12\left(x+4\right)}{3\left(x-1\right)\left(x+4\right)}\)

\(\Leftrightarrow-3x^2+36x+12=36x-36+12x+48\)

\(\Leftrightarrow-3x^2+36x+12-48x-12=0\)

\(\Leftrightarrow3x\left(x+4\right)=0\)

=>x=0(nhận) hoặc x=-4(loại)

 

 

9 tháng 5 2021

a. \(\dfrac{-3}{x^2-9}+\dfrac{5}{3-x}=\dfrac{2}{x+3}\)

<=> \(\dfrac{-3}{x^2-9}+\dfrac{-5}{x-3}=\dfrac{2}{x+3}\)

<=> \(\dfrac{-3}{x^2-9}+\dfrac{-5\left(x+3\right)}{x^2-9}=\dfrac{2\left(x-3\right)}{x^2-9}\)

<=> \(-3+\left(-5\right)\left(x+3\right)=2\left(x-3\right)\)

<=> -3 + (-5x) + (-15) = 2x - 6

<=> -5x -2x = 15 - 6 + 3

<=> -7x = 12

<=> x = \(\dfrac{-12}{7}\)

Vậy ........

b. \(\left|x+5\right|=2x-1\)

Nếu x \(\ge\) -5 => \(\left|x+5\right|\) = x + 5

Nếu x < -5 => \(\left|x+5\right|\) = -(x + 5)

TH1: Nếu x \(\ge\) -5

<=> x + 5 = 2x - 1

<=> x - 2x = -1 - 5

<=> -x = -6 

<=> x = 6

TH2: Nếu x < -5 

<=> -(x + 5) = 2x - 1

<=> -x - 5 = 2x - 1

<=> -5 + 1 = 2x + x

<=> -4 = 3x

<=> x = \(\dfrac{-4}{3}\)

Vậy .........

c. Bạn tự giải câu này nhé (có thể tách các hạng tử rồi tính)

9 tháng 5 2021

bạn giải giúp mk câu C đi mk hok ko giỏi toán khocroi

12 tháng 5 2022

*vn:vô nghiệm.

a. \(\left(x^2-2\right)\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2=0\\x^2+x+1=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\sqrt{2}\right)\left(x+\sqrt{2}\right)=0\\\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vn\right)\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\sqrt{2}\)

-Vậy \(S=\left\{\pm\sqrt{2}\right\}\).

b. \(16x^2-8x+5=0\)

\(\Leftrightarrow16x^2-8x+1+4=0\)

\(\Leftrightarrow\left(4x-1\right)^2+4=0\) (vô lí)

-Vậy S=∅.

c. \(2x^3-x^2-8x+4=0\)

\(\Leftrightarrow x^2\left(2x-1\right)-4\left(2x-1\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\pm2\end{matrix}\right.\)

-Vậy \(S=\left\{\dfrac{1}{2};\pm2\right\}\).

d. \(3x^3+6x^2-75x-150=0\)

\(\Leftrightarrow3x^2\left(x+2\right)-75\left(x+2\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x^2-25\right)=0\)

\(\Leftrightarrow3\left(x+2\right)\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\pm5\end{matrix}\right.\)

-Vậy \(S=\left\{-2;\pm5\right\}\)