Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago trong \(\Delta\) AHC vuông tại H ta có :
\(AH^2+HC^2=AC^2\)
\(\Rightarrow HC^2=AC^2-AH^2\)
\(\Rightarrow HC=\sqrt{AC^2-AH^2}=\sqrt{40^2-24^2}=32cm\)
b) Áp dụng định lí Pytago trong \(\Delta\) AHC vuông tại H ta có :
\(AH^2+HC^2=AC^2\)
\(\Rightarrow AC=\sqrt{AH^2+HC^2}=\sqrt{9,6^2+12,8^2}=16cm\)
c) \(BC=CH+BH=72+12,5=84,5\left(cm\right)\)
Ta có: \(\left\{{}\begin{matrix}AB^2=BH.BC=12,5.84,5=1056,25\\AC^2=CH.BC=72.84,5=6084\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{65}{2}\left(cm\right)\\AC=78\left(cm\right)\end{matrix}\right.\)
Ta có: \(AB.AC=AH.BC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{78.\dfrac{65}{2}}{84,5}=30\left(cm\right)\)
Lời giải:
Áp dụng HTL trong tam giác vuông:
$AB^2=BH.BC=BH(BH+CH)$
$\Leftrightarrow 3^2=x(x+3,2)$
$\Leftrightarrow x^2+3,2x-9=0$
$\Leftrightarrow (x-1,8)(x+5)=0$
$\Rightarrow x=1,8$ (do $x>0$)
Vậy $x=1,8$ (cm)
a, AB = 7,5cm, AC = 10cm, BC = 12,5cm, HC = 8cm
b, AH = 3 3 cm; P A B C = 18 + 6 3 c m ; P A B H = 9 + 3 3 c m ; P A C H = 9 + 9 3 c m
Xét tam giác ABC vuông tại A, đường cao AH
* Áp dụng hệ thức :
\(\frac{1}{AH^2}=\frac{1}{AB^2}+\frac{1}{AC^2}\)mà \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow AB=\frac{3}{4}AC\)( gt )
\(\Rightarrow\frac{1}{36}=\frac{1}{\left(\frac{3}{4}AC\right)^2}+\frac{1}{AC^2}\)
\(\Leftrightarrow\frac{1}{36}=\frac{AC^2+\left(\frac{3}{4}AC\right)^2}{AC^2\left(\frac{3}{4}AC\right)^2}\Rightarrow36AC^2+36\left(\frac{3}{4}AC\right)^2=AC^2\left(\frac{3}{4}AC\right)^2\)
\(\Leftrightarrow36AC^2+\frac{81}{4}AC^2=\frac{9}{16}AC^4\)
\(\Leftrightarrow\frac{225}{4}AC^2=\frac{9}{16}AC^4\Leftrightarrow\frac{9}{16}AC^4-\frac{225}{4}AC^2=0\)
\(\Leftrightarrow\frac{9}{16}AC^2-\frac{225}{4}=0\Leftrightarrow AC^2=\frac{225}{4}.\frac{16}{9}=25.4=100\Leftrightarrow AC=10\)cm
\(\Rightarrow AB=\frac{3}{4}AC\Rightarrow AB=\frac{3}{4}.10=\frac{30}{4}=\frac{15}{2}\)cm
* Áp dụng định lí Pytago ta có :
\(AB^2+AC^2=BC^2\Rightarrow BC^2=\frac{225}{4}+100=\frac{625}{4}\Rightarrow BC=\frac{25}{2}\)
* Áp dụng hệ thức : \(AB^2=BH.BC\Rightarrow BH=\frac{AB^2}{BC}=\frac{\frac{225}{4}}{\frac{25}{2}}=\frac{225}{4}.\frac{2}{25}=\frac{9}{2}\)
\(\Rightarrow CH=BC-BH=\frac{25}{2}-\frac{9}{2}=\frac{16}{2}=8\)
Vậy BH = 9/2 cm ; CH = 8 cm
a) \(AH^2=BH.CH=3,6.6,4=23,04\)
\(\Rightarrow AH=4,8\left(cm\right)\)
\(AC^2=AH^2+HC^2=23,04+40,96=64\)
\(\Rightarrow AC=8\left(cm\right)\)
\(AB^2=AH^2+BH^2=23,04+12,96=36\)
\(\Rightarrow AB=6\left(cm\right)\)
\(BC=BH+CH=3,6+6,4=10\left(cm\right)\)
\(tanB=\dfrac{8}{6}=\dfrac{4}{3}\Rightarrow B=53^o\)
\(\Rightarrow C=90^o-53^o=37^o\)
b) Xét Δ vuông ABH, có đường cao DH ta có :
\(AH^2=AD.AB\left(1\right)\)
Tương tự Δ vuông ACH :
\(AH^2=AE.AC\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow AD.AB=AE.AC\)