K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

1)Tco ABCD là hình chữ nhật ( ADC=DCB=ABC=\(90^o\))

=> DC= AB=1,5(m)

=>AD=BC=4(m)

Xét tam giác ACE vuông tại A có đường cao AD

=>\(AD^2=DC.DE\)

\(\Leftrightarrow DE=\dfrac{AD^2}{DC}=\dfrac{16}{1,5}=10,7\)(m)

\(\Leftrightarrow CE=DE+DC=1,5+10,7=12,2\left(m\right)\)

 

Gọi số người mua là x(người), doanh thu là y(đồng)

(Điều kiện: \(x\in Z^+;y>0\))

Vì doanh thu bằng số người mua nhân với lại giá của bộ quần áo nên y=320000x(đồng)

=>\(320000=\dfrac{y}{x}\)

Số người mua tăng lên 60% và doanh thu cũng tăng thêm 30% nên giá mới sẽ là:

\(\dfrac{y\cdot\left(1+30\%\right)}{x\left(1+60\%\right)}=\dfrac{y}{x}\cdot\dfrac{13}{16}=320000\cdot\dfrac{13}{16}=260000\left(đồng\right)\)

a: ĐKXĐ x>0; x<>1

\(A=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x-1}{\sqrt{x}}\)

b: A<0

=>x-1<0

=>0<x<1

2 tháng 7 2023

loading...

loading...

11 tháng 10 2016

Bạn tự tìm điều kiện xác định nhé :)

\(Q=\left(1-\frac{x-3\sqrt{x}}{x-9}\right):\left(\frac{\sqrt{x}-3}{2-\sqrt{x}}+\frac{\sqrt{x}-2}{3+\sqrt{x}}-\frac{9-x}{x+\sqrt{x}-6}\right)\)

\(=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}:\left(\frac{\left(3-\sqrt{x}\right)\left(\sqrt{x}+3\right)+\left(\sqrt{x}-2\right)^2-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\right)\)

\(=\frac{3}{\sqrt{x}+3}:\frac{9-x+x-4\sqrt{x}+4-9+x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\frac{3}{\sqrt{x}+3}:\frac{\left(\sqrt{x}-2\right)^2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{3}{\sqrt{x}+3}.\frac{\sqrt{x}+3}{\sqrt{x}-2}=\frac{3}{\sqrt{x}-2}\)

Tọa độ giao điểm là:

\(\left\{{}\begin{matrix}-x^2+x+2=0\\y=-x-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2-x-2=0\\y=-x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+1\right)=0\\y=-x-2\end{matrix}\right.\Leftrightarrow\left(x,y\right)\in\left\{\left(2;-4\right);\left(-1;-1\right)\right\}\)

19 tháng 2 2022

Em cảm ơn ạ (・ω・*)ー

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Lời giải:

\(S_{ABC}=\frac{AE.BC}{2}=\frac{3.\frac{25}{4}}{2}=9,375\) (cm vuông)

Dễ thấy $AIEJ$ là hình chữ nhật, nên:

$S_{AIEJ}=AI.AJ$

Áp dụng hệ thức lượng trong tam giác vuông với tam giác $AEB$ và $AEC$ ta có:

\(AI.AB=AE^2; AJ.AC=AE^2\)

\(\Rightarrow AI.AJ=\frac{AE^4}{AB.AC}=\frac{3^4}{2S_{ABC}}=\frac{3^4}{2.9,375}=4,32\) (cm vuông)

AH
Akai Haruma
Giáo viên
24 tháng 5 2021

Hình vẽ:

23 tháng 11 2023

Câu 3:

a: A=1/2

=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{2}\)

=>\(2\sqrt{x}-4=\sqrt{x}\)

=>\(2\sqrt{x}-\sqrt{x}=4\)

=>\(\sqrt{x}=4\)

=>x=16(nhận)

b: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}+\dfrac{\sqrt{x}+3}{x-1}\)

\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}+\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)+\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x-2\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)

c: \(P=A\cdot B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)

\(\sqrt{P}< \dfrac{1}{2}\)

=>\(0< =P< \dfrac{1}{4}\)

=>P>=0 và P<1/4

=>P>=0 và P-1/4<0

=>\(\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}+1}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}+1}-\dfrac{1}{4}< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}-2>=0\\\dfrac{4\sqrt{x}-8-\sqrt{x}-1}{4\left(\sqrt{x}+1\right)}< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\sqrt{x}>=2\\3\sqrt{x}-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>=2\\\sqrt{x}< 3\end{matrix}\right.\)

=>\(2< =\sqrt{x}< 3\)

=>4<=x<9

16 tháng 12 2021

d b d b d