Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: Ta có: ΔOAC cân tại O
mà OI là đường trung tuyến
nên OI\(\perp\)AC và OI là phân giác của góc AOC
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
=>AC\(\perp\)CB tại C
Ta có: OI\(\perp\)AC
CB\(\perp\)AC
Do đó: OI//CB
2: Xét ΔOAD và ΔOCD có
OA=OC
\(\widehat{DOA}=\widehat{DOC}\)
OD chung
Do đó: ΔOAD=ΔOCD
=>\(\widehat{OAD}=\widehat{OCD}\)
=>\(\widehat{OAD}=90^0\)
=>DA là tiếp tuyến của (O)
3: Ta có: OC\(\perp\)DK
KB\(\perp\)KD
Do đó: OC//KB
=>\(\widehat{KBC}=\widehat{OCB}\)(hai góc so le trong)
mà \(\widehat{OCB}=\widehat{OBC}\)(ΔOBC cân tại O)
nên \(\widehat{KBC}=\widehat{OBC}\)
Xét ΔBHC vuông tại H và ΔBKC vuông tại K có
BC chung
\(\widehat{HBC}=\widehat{KBC}\)
Do đó: ΔBHC=ΔBKC
=>CH=CK
Xét ΔCAB vuông tại C có CH là đường cao
nên \(CH^2=HA\cdot HB\)
=>\(CK^2=HA\cdot HB\)
Câu 3:
a: Xét (O) có
CM,CA là các tiếp tuyến
Do đó: CM=CA và OC là phân giác của góc MOA
Ta có: OC là phân giác của góc MOA
=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc MOB
Ta có: OD là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{MOD}+\widehat{MOC}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=\dfrac{180^0}{2}=90^0\)
b: Xét ΔCOD vuông tại O có OM là đường cao
nên \(MC\cdot MD=OM^2\)
=>\(AC\cdot BD=OM^2=R^2\)
c: Ta có:AC\(\perp\)AB
BD\(\perp\)AB
Do đó: AC//BD
Xét ΔNCA và ΔNBD có
\(\widehat{NCA}=\widehat{NBD}\)(hai góc so le trong, AC//BD)
\(\widehat{CNA}=\widehat{BND}\)(hai góc đối đỉnh)
Do đó: ΔNCA đồng dạng với ΔNBD
=>\(\dfrac{NC}{NB}=\dfrac{AC}{BD}=\dfrac{NA}{ND}\)
=>\(\dfrac{NA}{ND}=\dfrac{MC}{MD}\)
=>\(\dfrac{DM}{MC}=\dfrac{DN}{NA}\)
Xét ΔDAC có \(\dfrac{DM}{MC}=\dfrac{DN}{NA}\)
nên MN//AC
1)Tco ABCD là hình chữ nhật ( ADC=DCB=ABC=\(90^o\))
=> DC= AB=1,5(m)
=>AD=BC=4(m)
Xét tam giác ACE vuông tại A có đường cao AD
=>\(AD^2=DC.DE\)
\(\Leftrightarrow DE=\dfrac{AD^2}{DC}=\dfrac{16}{1,5}=10,7\)(m)
\(\Leftrightarrow CE=DE+DC=1,5+10,7=12,2\left(m\right)\)
Bạn nên chịu khó gõ đề ra khả năng được giúp sẽ cao hơn.
Câu h của em đây nhé
h, ( 1 + \(\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\)).(1 - \(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}\))
= \(\dfrac{\sqrt{3}-1+3-\sqrt{3}}{\sqrt{3}-1}\).\(\dfrac{\sqrt{3}+1-3-\sqrt{3}}{\sqrt{3}+1}\)
= \(\dfrac{2}{\sqrt{3}-1}\).\(\dfrac{-2}{\sqrt{3}+1}\)
= \(\dfrac{-4}{2}\)
= -2
a: ĐKXĐ x>0; x<>1
\(A=\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}-1}{1}=\dfrac{x-1}{\sqrt{x}}\)
b: A<0
=>x-1<0
=>0<x<1
Gọi số người mua là x(người), doanh thu là y(đồng)
(Điều kiện: \(x\in Z^+;y>0\))
Vì doanh thu bằng số người mua nhân với lại giá của bộ quần áo nên y=320000x(đồng)
=>\(320000=\dfrac{y}{x}\)
Số người mua tăng lên 60% và doanh thu cũng tăng thêm 30% nên giá mới sẽ là:
\(\dfrac{y\cdot\left(1+30\%\right)}{x\left(1+60\%\right)}=\dfrac{y}{x}\cdot\dfrac{13}{16}=320000\cdot\dfrac{13}{16}=260000\left(đồng\right)\)
Câu 3:
a: A=1/2
=>\(\dfrac{\sqrt{x}-2}{\sqrt{x}}=\dfrac{1}{2}\)
=>\(2\sqrt{x}-4=\sqrt{x}\)
=>\(2\sqrt{x}-\sqrt{x}=4\)
=>\(\sqrt{x}=4\)
=>x=16(nhận)
b: \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}+\dfrac{\sqrt{x}+3}{x-1}\)
\(=\dfrac{\sqrt{x}-3}{\sqrt{x}-1}+\dfrac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)+\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x-2\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+1}\)
c: \(P=A\cdot B=\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+1}=\dfrac{\sqrt{x}-2}{\sqrt{x}+1}\)
\(\sqrt{P}< \dfrac{1}{2}\)
=>\(0< =P< \dfrac{1}{4}\)
=>P>=0 và P<1/4
=>P>=0 và P-1/4<0
=>\(\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}+1}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}+1}-\dfrac{1}{4}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}-2>=0\\\dfrac{4\sqrt{x}-8-\sqrt{x}-1}{4\left(\sqrt{x}+1\right)}< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\sqrt{x}>=2\\3\sqrt{x}-9< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}>=2\\\sqrt{x}< 3\end{matrix}\right.\)
=>\(2< =\sqrt{x}< 3\)
=>4<=x<9