Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Công sức ngồi gõ hết câu c xong đi chơi về mở máy bấm gửi thì bảo "Lỗi xảy ra khi cập nhật dữ liệu:"
May thiệt ấy nhỉ? :<
Điều kiện tự làm nhé.
\(\hept{\begin{cases}3\sqrt{x+2y}=4-x-2y\left(1\right)\\\sqrt[3]{2x+6}+\sqrt{2y}=2\left(2\right)\end{cases}}\)
Xét (1) ta đặt \(\sqrt{x+2y}=a\ge0\)thì
\(\left(1\right)\Leftrightarrow3a=4-a^2\)
\(\Leftrightarrow\orbr{\begin{cases}a=-4\left(l\right)\\a=1\end{cases}}\)
\(\Rightarrow\sqrt{x+2y}=1\)
\(\Leftrightarrow x=1-2y\)
Thế vào (2) ta được
\(\sqrt[3]{2\left(1-2y\right)+6}+\sqrt{2y}=2\)
\(\Leftrightarrow\sqrt[3]{8-4y}+\sqrt{2y}=2\)
Đặt \(\hept{\begin{cases}\sqrt[3]{8-4y}=a\\\sqrt{2y}=b\ge0\end{cases}}\) thì ta có:
\(\hept{\begin{cases}a+b=2\\a^3+2b^2=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2-a\\a^3+2\left(2-a\right)^2=8\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2-a\\a^3+2a^2-8a=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=2-a\\a\left(a-2\right)\left(a+4\right)=0\end{cases}}\)
Tới đây thì bạn làm tiếp nhé
\(\hept{\begin{cases}3\sqrt{x+2y}=4-x-y\left(1\right)\\\sqrt[3]{2x+6}+\sqrt{2y}=2\left(2\right)\end{cases}}\)
ĐK : \(x\ge y\ge0\)
Giai (1) : \(3\sqrt{x+2y}=4-\left(x+2y\right)\)Ta đặt \(\sqrt{x+2y}=t\left(t>0\right)\)Phương trình trở thành
\(3t=4-t^2\Leftrightarrow t^2+3t-4=0\Leftrightarrow\orbr{\begin{cases}t=1\\t=-4\left(L\right)\end{cases}}\)
\(\sqrt{x+2y}=1\Leftrightarrow x+2y=1\Leftrightarrow x=1-2y\)thế vào phương trình 2 ta có :
\(\sqrt[3]{2\left(1-2y\right)+6}=2-\sqrt{2y}\Leftrightarrow\sqrt[3]{8-4y}=2-\sqrt{2y}\)
Đặt \(a=\sqrt{2y}\left(a\ge0\right)\Rightarrow2y=a^2\)Phương trình trở thành;
\(\sqrt[3]{8-2a^2}=2-a\Leftrightarrow8-2a^2=8-12a-6a^2-a^3\)
\(\Leftrightarrow a\left(a^2-8a+12\right)=0\)
\(a=0\)hoặc \(a=4+\sqrt{28}\)hoặc \(a=4-\sqrt{28}\left(L\right)\)
Với \(a=0\)\(\Rightarrow y=0\Rightarrow x=1\)
Với \(a=4+\sqrt{28}\Rightarrow y=\frac{4+2\sqrt{7}}{2}=2+\sqrt{7}\Rightarrow x=-3-2\sqrt{7}\left(L\right)\)
Vậy nghiệm của hệ là \(\hept{\begin{cases}x=1\\y=0\end{cases}}\)
ĐKXĐ: \(x\ge4\)
\(\hept{\begin{cases}\sqrt{x-1}+\sqrt{y^2-2y+4}=4\\\sqrt{x-4}+y=3\left(1\right)\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=4-\sqrt{y^2-2y+4}\\\sqrt{x-4}=3-y\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\left(\sqrt{x-1}\right)^2=\left(4-\sqrt{y^2-2y+4}\right)^2\\\left(\sqrt{x-4}\right)^2=\left(3-y\right)^2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x-1=16-8\sqrt{y^2-2y+4}+y^2-2y+4\\x-4=y^2-6y+9\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=-8\sqrt{y^2-2y+4}+y^2-2y+21\\x=y^2-6y+13\end{cases}}\)
\(\Rightarrow y^2-2y+21-8\sqrt{y^2-2y+4}=y^2-6y+13\)
\(\Leftrightarrow4y+8=8\sqrt{y^2-2y+4}\)\(\Leftrightarrow y+2=2\sqrt{y^2-2y+4}\)
\(\Rightarrow\left(y+2\right)^2=\left(2\sqrt{y^2-2y+4}\right)^2\Leftrightarrow y^2+4y+4=4y^2-8y+16\)
\(\Leftrightarrow3y^2-12y+12=0\Leftrightarrow y^2-4y+4=0\Leftrightarrow\left(y-2\right)^2=0\Leftrightarrow y-2=0\Leftrightarrow y=2\)
Thay y=2 vào (1) suy ra \(\sqrt{x-4}+2=3\Leftrightarrow\sqrt{x-4}=1\Leftrightarrow x-4=1\Leftrightarrow x=5\left(tmdk\right)\)
Vậy (x;y)=(5;2)