Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
a: Ta có: \(\left(1-4x\right)\left(x-1\right)+\left(2x+1\right)\left(2x+3\right)=38\)
\(\Leftrightarrow x-1-4x^2+4x+4x^2+6x+2x+3=38\)
\(\Leftrightarrow13x=36\)
hay \(x=\dfrac{36}{13}\)
b: Ta có: \(\left(2x+3\right)\left(x+2\right)-\left(x-4\right)\left(2x-1\right)=75\)
\(\Leftrightarrow2x^2+4x+3x+6-2x^2+x+8x-4=75\)
\(\Leftrightarrow15x=73\)
hay \(x=\dfrac{73}{15}\)
Tổng tiền mua cây bút và hộp bút:
4000 x 5 + 50000 = 70000(đồng)
Số tiền còn lại:
250000 - 70000= 180000(đồng)
Nam có thể mua được nhiều nhất số quyển vở là:
180000: 8000 = 22 (quyển) (Thừa 4000 đồng)
a. Xét tam giác OHP và tam giác OPQ, có:
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{P}:chung\)
Vậy tam giác OHP đồng dạng tam giác OPQ ( g.g )
\(\Rightarrow\dfrac{OP}{PQ}=\dfrac{PH}{OP}\)
\(\Leftrightarrow OP^2=PH.PQ\)
b.Xét tam giác OHP và tam giác OHQ, có:
\(\widehat{H}=90^0\)
\(\widehat{HQO}=\widehat{HOP}\) ( cùng phụ với góc P )
Vậy tam giác OHP đồng dạng tam giác OHQ ( g.g )
\(\Rightarrow\dfrac{OH}{PH}=\dfrac{HQ}{OH}\)
\(\Rightarrow OH^2=PH.OH\)
c.Xét tam giác OHQ và tam giác OPQ, có:
\(\widehat{H}=\widehat{A}=90^0\)
\(\widehat{Q}:chung\)
Vậy tam giác OHQ đồng dạng tam giác OPQ ( g.g )
\(\Rightarrow\dfrac{OH}{OP}=\dfrac{OQ}{PQ}\)
\(\Leftrightarrow OH.PQ=OQ.OP\)
a: Xét ΔOPQ vuông tại O có OH là đườg cao
nên \(OP^2=PH\cdot PQ\)(hệ thức lượng)
b: Xét ΔOPQ vuông tại O có OH là đường cao
nên \(OH^2=HP\cdot HQ\)(hệ thức lượng)
c: Xét ΔOPQ vuông tại O có OH là đường cao
nên \(OH\cdot PQ=OP\cdot OQ\)
6.
a, ĐK: \(x\ne2;x\ne3\)
\(P=\dfrac{2x-9}{x^2-5x+6}-\dfrac{x+3}{x-2}-\dfrac{2x+1}{3-x}\)
\(=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x-2\right)\left(x-3\right)}+\dfrac{\left(2x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x-9}{\left(x-2\right)\left(x-3\right)}-\dfrac{x^2-9}{\left(x-2\right)\left(x-3\right)}+\dfrac{2x^2-3x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{2x-9-x^2+9+2x^2-3x-2}{\left(x-2\right)\left(x-3\right)}\)
\(=\dfrac{x^2-x-2}{\left(x-2\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\dfrac{x+1}{x-3}\)