Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình: \(\frac{3}{x-3}-\frac{2}{x-1}=\frac{x-1}{2}-\frac{x-3}{3}\).
có ai giúp mk vs
Đặt \(x-3=t\) thì pt đã cho trở thành :
\(\frac{3}{t}-\frac{2}{t+2}=\frac{t+2}{2}-\frac{t}{3}\)
\(\Leftrightarrow\frac{3t+6-2t}{t\left(t+2\right)}=\frac{3t+6-2t}{6}\)
\(\Leftrightarrow\left(t+6\right)\left[\frac{1}{t\left(t+2\right)}-\frac{1}{6}\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t+6=0\\\frac{1}{t\left(t+2\right)}=\frac{1}{6}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}t=-6\\t^2+2t-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=-6\\\left(t+1\right)^2=7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\t=\sqrt{7}-1\\t=-\sqrt{7}-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2+\sqrt{7}\\x=2-\sqrt{7}\end{matrix}\right.\) ( TM )
\(x^2\ge0\)
\(\Rightarrow\)\(x^2+2014\ge2014\)
\(\Rightarrow\)\(\left|x^2+2014\right|=x^2+2014\)
Vậy ta có: \(x^2+2014=1\)
\(\Leftrightarrow\) \(x^2=-2013\) vô lí
Vậy pt vô nghiệm
Vì x2+2014>0 với mọi x => \(|x^2+2014|=x^2+2014\ge2014\)
\(\Rightarrow\)Đẳng thức ở đề bài không thể xảy ra
a) =>(x+3)(x-2)-2(x+1)2=(x-3)2-2x(x-2)
=>x2+x-6-2(x2+2x+1)=x2-6x+9-2x2+4x
=>x2+x-6-2x2-4x-2-x2+6x-9+2x2-4x=0
=>-x-17=0
=>x=-17
b)=>x3-6x2+12x-8+x2-10x+25=x3-5x2-7x+3
=>x3-5x2+2x+17-x3+5x2+7x-3=0
=>9x+14=0
=>x=\(\frac{-14}{9}\)
Tôi nghĩ là như này :)) Sai thì chịu nhá :((
Ta có pt : \(\left|x+1\right|+3\left|x-1\right|=x+2+\left|x\right|+2\left|x-2\right|\) (1)
Ta thấy VT pt (1) là : \(\left|x+1\right|+3\left|x-1\right|\ge0\forall x\)
Nên VP pt (1) cũng phải lớn hơn bằng 0
Có nghĩa là \(x+2\ge0\) \(\Leftrightarrow x\ge-2\)
Khi đó : \(\left\{{}\begin{matrix}\left|x+1\right|=-\left(x+1\right)\\3\left|x-1\right|=3\left(1-x\right)\\\left|x\right|=-x\\2\left|x-2\right|=2\left(2-x\right)\end{matrix}\right.\)
Vậy pt (1) \(\Leftrightarrow-x-1+3-3x=x+2-x+4-2x\)
\(\Leftrightarrow2x=-4\Leftrightarrow x=-2\) ( thỏa mãn )
Vậy \(x=-2\) thỏa mãn pt.
\(\left|x+1\right|\) | - | + | + | + | + |
3\(\left|x-1\right|\) | - | - | + | + | + |
\(\left|x\right|\) | - | - | - | + | + |
\(2\left|x-2\right|\) | - | - | - | - | + |
PT | 2x-4=5x-2 | 2x-4=5x-2 | -4x+2=2x-2 | -4x+2=-2x+6 |
-1 0 1 2
1) x=-2/3>-1( loại)
2)
a) x + 3 = 0
\(\Leftrightarrow x=-3\)
Vậy phương trình có tập nghiệm \(S=\left\{-3\right\}\)
b) 2x - 1 = 0
\(\Leftrightarrow2x=1\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
c) x - 1 = 5x - 3
\(\Leftrightarrow x-5x=-3+1\)
\(\Leftrightarrow-4x=-2\)
\(\Leftrightarrow x=\frac{1}{2}\)
Vậy phương trình có tập nghiệm \(S=\left\{\frac{1}{2}\right\}\)
\(\left(x-1\right)^3+\left(2x-1\right)^3=\left(3x-2\right)^3\)
\(\left(3x-2\right)\left[\left(x-1\right)^2-\left(x-1\right)\left(2x-1\right)+\left(2x-1\right)^2-\left(3x-2\right)^2\right]=0\)
\(\left(3x-2\right).\left(-3\right)\left(2x^2-3x+1\right)=0\)
\(\left(3x-2\right)\left(x-1\right)\left(2x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=\frac{1}{2}\\x=\frac{2}{3}\end{matrix}\right.\)
Vậy ....
\(\sqrt{x-2\sqrt{x-3}-2}=1\)
=> \(x-2\sqrt{x-3}=1^2=1\)
=> \(-2\sqrt{x-3}=1-x+2\)
=> \(-2\sqrt{x-3}=3-x\)
=> \(\left(-2\sqrt{x-3}\right)^2=\left(3-x\right)^2\)
=> \(4\left(x-3\right)=9-6x+x^2\)
=> \(4x-12=9-6x+x^2\)
=> \(4x-12-9+6x-x^2=0\)
=> \(10x-21-x^2=0\)
Mình xin hết ( biết có vậy )
\(\sqrt{x-2\sqrt{x-3}+2}=1\)
\(\Leftrightarrow\sqrt{x-3-2\sqrt{x-3}+1}=1\)
\(\Leftrightarrow\sqrt{\left(\sqrt{x-3}-1\right)^2}=1\)
\(\Leftrightarrow\left|\sqrt{x-3}-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-3}-1=1\\\sqrt{x-3}-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=7\\x=3\end{matrix}\right.\)
Vậy....