Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.lxl-12x-x=-3-9
2.lxl-13x=-12
2x-13x=-12;x>=0
2.(-x)-13x=-12;x<0
x=12/11;x>=0
x=4/5;x<0
a)\(ĐKXĐ:x\ge\frac{-1}{2}\)
\(\sqrt{x^2+4x+4}=2x+1\)
\(\Leftrightarrow\sqrt{\left(x+2\right)^2}=2x+1\)
\(\Leftrightarrow x+2=2x+1\)
\(\Leftrightarrow-x=-1\)
\(\Leftrightarrow x=1\)
Vậy nghiệm duy nhất của phương trình là 1.
b)\(ĐKXĐ:x\ge3\)
\(\sqrt{4x^2-12x+9}=x-3\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x-3\)
\(\Leftrightarrow2x-3=x-3\)
\(\Leftrightarrow2x=x\)
\(\Leftrightarrow x=0\)(không t/m đkxđ)
Vậy phương trình vô nghiệm
a: ĐKXĐ: \(x\in R\)
\(\sqrt{\left(x-3\right)^2}=3-x\)
=>|x-3|=3-x
=>x-3<=0
=>x<=3
b:
ĐKXĐ: x thuộc R
\(\sqrt{4x^2-20x+25}+2x=5\)
=>|2x-5|=5-2x
=>2x-5<=0
=>x<=5/2
c: ĐKXĐ: \(x\in R\)
PT =>căn (6x-1)^2=5
=>|6x-1|=5
=>6x-1=5 hoặc 6x-1=-5
=>6x=-4 hoặc 6x=6
=>x=1 hoặc x=-2/3
a) \(\sqrt[]{x^2-4x+4}=x+3\)
\(\Leftrightarrow\sqrt[]{\left(x-2\right)^2}=x+3\)
\(\Leftrightarrow\left|x-2\right|=x+3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=x+3\\x-2=-\left(x+3\right)\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}0x=5\left(loại\right)\\x-2=-x-3\end{matrix}\right.\)
\(\Leftrightarrow2x=-1\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(2x^2-\sqrt[]{9x^2-6x+1}=5\)
\(\Leftrightarrow2x^2-\sqrt[]{\left(3x-1\right)^2}=5\)
\(\Leftrightarrow2x^2-\left|3x-1\right|=5\)
\(\Leftrightarrow\left|3x-1\right|=2x^2-5\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=2x^2-5\\3x-1=-2x^2+5\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}2x^2-3x-4=0\left(1\right)\\2x^2+3x-6=0\left(2\right)\end{matrix}\right.\)
Giải pt (1)
\(\Delta=9+32=41>0\)
Pt \(\left(1\right)\) \(\Leftrightarrow x=\dfrac{3\pm\sqrt[]{41}}{4}\)
Giải pt (2)
\(\Delta=9+48=57>0\)
Pt \(\left(2\right)\) \(\Leftrightarrow x=\dfrac{-3\pm\sqrt[]{57}}{4}\)
Vậy nghiệm pt là \(\left[{}\begin{matrix}x=\dfrac{3\pm\sqrt[]{41}}{4}\\x=\dfrac{-3\pm\sqrt[]{57}}{4}\end{matrix}\right.\)
Ta có: \(\sqrt{9x+9}+\sqrt{4x+4}-2\sqrt{16x+16}=\sqrt{x+1}-8\)
\(\Leftrightarrow3\sqrt{x+1}+2\sqrt{x+1}-8\sqrt{x+1}-\sqrt{x+1}=-8\)
\(\Leftrightarrow\sqrt{x+1}=2\)
\(\Leftrightarrow x+1=4\)
hay x=3
\(\sqrt{4x^2-12x+9}=x-3\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x-3\)
\(\Leftrightarrow|2x-3|=x-3\)
Xét 2 trường hợp :
TH1 : Nếu \(2x-3>0\Rightarrow x>\frac{3}{2}\)thì \(|2x-3|=2x-3\).Khi đó ta có PT:
\(2x-3=x-3\)
\(\Leftrightarrow2x-x=-3+3\)
\(\Leftrightarrow x=0\)( loại vì \(x>\frac{3}{2}\))
TH2: Nếu \(2x-3< 0\Rightarrow x< \frac{3}{2}\)thì \(|2x-3|=3-2x\).Khi đó ta có PT:
\(3-2x=x-3\)
\(\Leftrightarrow-2x-x=-3-3\)
\(\Leftrightarrow-3x=-6\)
\(\Leftrightarrow x=2\)( loại vì \(x< \frac{3}{2}\))
Vậy PT vô nghiệm
\(ĐKXĐ:x\ge3\)
\(\sqrt{4x^2-12x+9}=x-3\)
\(\Leftrightarrow\sqrt{\left(2x-3\right)^2}=x-3\)
Mà \(x\ge3\) nên \(2x-3\ge3\)
\(\Rightarrow\sqrt{\left(2x-3\right)^2}=2x-3\)
\(\Rightarrow2x-3=x-3\)
\(\Leftrightarrow x=0\)(không t/m đkxđ)
Vậy tập nghiệm của phương trình \(S=\left\{\varnothing\right\}\)
P/S: KO CHẮC