Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đổi 30 phút = \(\dfrac{1}{2}\) (giờ)
Gọi x (km) là quãng đường từ A đến B (ĐK : x > 0)
Thời gian đi : \(\dfrac{x}{30}\left(h\right)\)
Thời gian về : \(\dfrac{x}{40}\left(h\right)\)
Vì thời gian về ít hơn thời gian đi 30 phút nên ta có pt:
\(\dfrac{x}{40}+\dfrac{x}{30}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{3x}{120}+\dfrac{4x}{120}=\dfrac{60}{120}\)
\(\Leftrightarrow7x=60\)
\(\Leftrightarrow x=\dfrac{60}{7}\) (N)
Vậy : quãng đường AB dài \(\dfrac{60}{7}\left(km\right)\)
6h30p = 6,5 giờ
30p = 0,5 giờ
Gọi độ dài quãng đường AB là a(km)
Thời gian lúc đi là
\(\dfrac{a}{40}\left(h\right)\)
Thời gian lúc về
\(\dfrac{a}{30}\left(h\right)\)
Ta có
\(\dfrac{a}{30}+\dfrac{a}{40}=6,5-0,5\\ \Leftrightarrow\dfrac{7a}{120}=6\Leftrightarrow a\approx103\left(km\right)\)
Gọi độ dài quãng đường AB là \(x\) ( km ; x > 0 )
Thì thời gian người đó đi từ A đến B là \(\dfrac{x}{30}\left(giờ\right)\)
Thời gian người đó quay về A là \(\dfrac{x}{20}\left(giờ\right)\)
Vì tổng thời gian lúc đi , lúc về và làm ở B hết 1 giờ là 5 giờ nên ta có phương trình : \(\dfrac{x}{30}+\dfrac{x}{20}+1=5\)
\(\Leftrightarrow\dfrac{x}{30}+\dfrac{x}{20}=4\)
\(\Leftrightarrow2x+3x=240\)
\(5x=240\)\(\Leftrightarrow x=48\left(nhận\right)\)
Vậy quãng đường AB dài \(48km\)
Đổi 40 phút =2/3 giờ
Vận tốc lúc về là: \(40.1,2=48\) (km/h)
Gọi độ dài quãng đường AB là x (km) với x>0
Thời gian người đó đi từ A đến B: \(\dfrac{x}{40}\) giờ
Thời gian người đó đi từ B về A: \(\dfrac{x}{48}\) giờ
Do thời gian về ít hơn thời gian đi là 2/3 giờ nên ta có pt:
\(\dfrac{x}{40}-\dfrac{x}{48}=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{x}{240}=\dfrac{2}{3}\)
\(\Rightarrow x=160\left(km\right)\)
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{x}{24}-\dfrac{x}{30}=\dfrac{1}{2}\Rightarrow x=60\left(tm\right)\)
đổi 45p = \(\dfrac{3}{4}h\)
gọi quãng đường AB là x(km)(x>0)
có
\(V_{\text{đ}i}=40\left(\text{km/h}\right)\\
V_{v\text{ề}}=30\left(\text{km/h}\right)\\
t_{\text{đ}i}=\dfrac{x}{40}\left(h\right)\\
t_{v\text{ề}}=\dfrac{x}{30}\left(h\right)\)
theo bài ra ta có pt
\(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{3}{4}\\
\Leftrightarrow\dfrac{4x}{120}-\dfrac{3x}{120}=\dfrac{90}{120}\\
\Leftrightarrow4x-3x=90\\
\Leftrightarrow x=90\left(t\text{m}\right)\)
=> qđ AB dài 90km
Gọi quãng đường AB là x ( x > 0 )
Theo bài ra ta có pt \(\dfrac{x}{30}-\dfrac{x}{40}=\dfrac{3}{4}\Rightarrow x=90\left(tm\right)\)