K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

ΔMEN nội tiếp

MN là đường kính

Do đó: ΔMEN vuông tại E

=>\(\widehat{MEN}=90^0\)

=>\(\widehat{FEN}=90^0\)

Xét tứ giác HFEN có

\(\widehat{FHN}+\widehat{FEN}=90^0+90^0=180^0\)

=>HFEN là tứ giác nội tiếp

=>H,F,E,N cùng thuộc một đường tròn

loading...

a: Xét (O) có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>\(\widehat{AMB}=90^0\)

b: Xét ΔOMC vuông tại M có MH là đường cao

nên \(HC\cdot HO=HM^2\left(1\right)\)

Xét ΔMAB vuông tại M có MH là đường cao

nên \(HA\cdot HB=HM^2\left(2\right)\)

Từ (1) và (2) suy ra \(HC\cdot HO=HA\cdot HB\)

c: Xét tứ giác AMBQ có

O là trung điểm của AB và MQ

Do đó: AMBQ là hình bình hành

Hình bình hành AMBQ có AB=MQ

nên AMBQ là hình bình hành

1.4:

a: CH=16^2/24=256/24=32/3

BC=24+32/3=104/3

AC=căn 32/3*104/3=16/3*căn 13

b: BC=12^2/6=24

AC=căn 24^2-12^2=12*căn 3

CH=24-6=18

a: góc CAO+góc CMO=180 độ

=>CAOM nội tiếp

b: Xét (O) có

CA,CM là tiếp tuyến

=>CA=CM và OC là phân giác của góc MOA(1)

Xét (O) co

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

CD=CM+MD=CA+DB

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

c: AC*BD=CM*MD=OM^2=R^2

12 tháng 10 2021

Câu 2: 

Ta có: \(\sqrt{x^2-4x+4}=x-1\)

\(\Leftrightarrow2-x=x-1\left(x< 2\right)\)

\(\Leftrightarrow-2x=-3\)

hay \(x=\dfrac{3}{2}\left(tm\right)\)

12 tháng 10 2021

\(\left(3\sqrt{7}\right)^2=63>28=\left(\sqrt{28}\right)^2\) hoặc \(3\sqrt{7}>2\sqrt{7}=\sqrt{28}\)

12 tháng 10 2021

C1: $\sqrt{28}=\sqrt{4.7}=2\sqrt 7$

Ta có: $3>2$

$\Leftrightarrow 3\sqrt 7>3\sqrt 7$ hay $3\sqrt 7>\sqrt{28}$

C2: $3\sqrt{7}=\sqrt{63}$

Ta có: $63>28$

$\Leftrightarrow\sqrt{63}>\sqrt{28}$ hay $3\sqrt 7>\sqrt{28}$

3: \(=\dfrac{\left(3-\sqrt{5}\right)^2}{\sqrt{5}-3}=\sqrt{5}-3\)

4: \(=\dfrac{\left(\sqrt{5}-2\right)^2}{\sqrt{5}-2}=\sqrt{5}-2\)

5: \(=\dfrac{8-2\sqrt{15}+4\sqrt{15}}{\sqrt{5}+\sqrt{3}}\)

\(=\dfrac{8+2\sqrt{15}}{\sqrt{5}+\sqrt{3}}=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)^2}{\sqrt{5}+\sqrt{3}}=\sqrt{5}+\sqrt{3}\)

6:

\(=\dfrac{8\sqrt{6}-11-4\sqrt{6}}{4\sqrt{2}-2\sqrt{3}}\)

\(=\dfrac{4\sqrt{6}-11}{4\sqrt{2}-2\sqrt{3}}=\dfrac{\sqrt{3}-2\sqrt{2}}{2}\)

25 tháng 7 2023

1) \(\dfrac{3\sqrt{5}-5\sqrt{3}}{3-\sqrt{15}}=\dfrac{\sqrt{15}\left(\sqrt{3}-\sqrt{5}\right)}{\sqrt{3}\left(\sqrt{3}-\sqrt{5}\right)}=\sqrt{15}\)

2) \(\dfrac{5\sqrt{6}-6\sqrt{5}}{2\sqrt{15}-5\sqrt{2}}=\dfrac{\sqrt{30}\left(\sqrt{5}-\sqrt{6}\right)}{\sqrt{10}\left(\sqrt{6}-\sqrt{5}\right)}=-\sqrt{3}\)

3) \(\dfrac{14-6\sqrt{5}}{\sqrt{5}-3}=\dfrac{\left(3-\sqrt{5}\right)^2}{\sqrt{5}-3}=\sqrt{5}-3\)

4) \(\dfrac{9-4\sqrt{5}}{\sqrt{5}-2}=\dfrac{\left(2-\sqrt{5}\right)^2}{\sqrt{5}-2}=\sqrt{5}-2\)

5) \(\dfrac{\left(\sqrt{3}-\sqrt{5}\right)^2+4\sqrt{15}}{\sqrt{3}+\sqrt{5}}=\dfrac{\sqrt{3}+\sqrt{5}}{\sqrt{3}+\sqrt{5}}=1\)

6) \(\dfrac{8\sqrt{6}-\left(\sqrt{3}+2\sqrt{2}\right)^2}{4\sqrt{2}-2\sqrt{3}}=\dfrac{8\sqrt{6}-11-4\sqrt{6}}{4\sqrt{2}-2\sqrt{3}}\)

\(=\dfrac{4\sqrt{6}-11}{2\left(2\sqrt{2}-\sqrt{3}\right)}=\dfrac{(\sqrt{3}-2\sqrt{2})^2}{2\left(\sqrt{3}-2\sqrt{2}\right)}=\dfrac{\sqrt{3}-2\sqrt{2}}{2}\)