Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(5x^2+3x-2\right)^2=\left(4x^2-3x-2\right)^2\)
\(\Rightarrow\left(5x^2+3x-2\right)^2-\left(4x^2-3x-2\right)^2=0\)
\(\Rightarrow\left[\left(5x^2+3x-2\right)-\left(4x^2-3x-2\right)\right]\left[\left(5x^2+3x-2\right)+\left(4x^2-3x-2\right)\right]=0\)
\(\Rightarrow\left(5x^2+3x-2-4x^2+3x+2\right)\left(5x^2+3x-2+4x^2-3x-2\right)=0\)
\(\Rightarrow\left(x^2+6x\right)\left(9x^2-4\right)=0\)
\(\Rightarrow x\left(x+6\right)\left[\left(3x\right)^2-2^2\right]=0\)
\(\Rightarrow x\left(x+6\right)\left(3x-2\right)\left(3x+2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+6=0\\3x-2=0\\3x+2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\\3x=2\\3x=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=-6\\x=\dfrac{2}{3}\\x=-\dfrac{2}{3}\end{matrix}\right.\)
a: Xet ΔHFB vuông tại F và ΔHEC vuông tại E có
góc FHB=góc EHC
=>ΔHFB đồng dạng với ΔHEC
b: Xet ΔAEB vuông tại E và ΔAFC vuông tại F co
góc EAB chung
=>ΔAEB đồng dạng vơi ΔAFC
c: ΔEBM vuông tại E
màEI là trung tuyến
nên IE=IM
=>góc IEM=góc IME=góc CBF
=>ΔCED đồng dạng vơi ΔCBA
=>CE/CB=CD/CA
=>CE/CD=CB/CA
=>ΔCEB đồng dạng với ΔCDA
=>góc CDA=góc BEC=90 độ
=>A,H,D thẳng hàng
Mình chỉ làm một bài thôi, còn những bài còn lại bạn giải theo cách tương tự nha
24) ĐKXĐ: \(x\notin\left\{-2;2\right\}\)
Ta có: \(\dfrac{x-1}{x+2}-\dfrac{x}{x-2}=\dfrac{5x-2}{4-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2-5x}{\left(x-2\right)\left(x+2\right)}\)
Suy ra: \(x^2-3x+2-x^2-2x=2-5x\)
\(\Leftrightarrow-5x+2-2+5x=0\)
\(\Leftrightarrow0x=0\)(luôn đúng)
Vậy: S={x|\(x\notin\left\{2;-2\right\}\)}
2x2+x-18 chia hết cho x-3
2x2-6x+6x+x-18
2x(x-3)+6(x-3)+x chia hết cho x-3
(2x+6)(x-3)+(x-3)+3 chia hết cho x-3
=>3 chia hết cho x-3 hay x-3EƯ(3)={1;-1;3;-3}
=>xE{4;2;6;0}
mk k biết biến đổi lp 8 thế này đã được chưa
5* (3/2) -/x-11/
15/2- /x-11/
nhận xét /x-11/ >=0
nên 15/2-/ x-11/ < hoặc = 15/2
đấu bằng xảy ra khi
x-11 = 0 => x=11
vậy GTLN là 15/2 tại x=11
Trả lời:
Bài 4:
\(A=9x^2+6x-3=\left(9x^2+6x+1\right)-4=\left(3x+1\right)^2-4\ge-4\forall x\)
Dấu "=" xảy ra khi 3x + 1 = 0 <=> x = - 1/3
Vậy GTNN của A = - 4 <=> x = - 1/3
\(B=x^2-2x+y^2-4y+7\)
\(=x^2-2x+y^2-4y+1+4+2\)
\(=\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+2\)
\(=\left(x-1\right)^2+\left(y-2\right)^2+2\ge2\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\y-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=2\end{cases}}}\)
Vậy GTNN của B = 2 <=> x = 1; y = 2
Bài 5:
a, \(A=5-8x-x^2\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left[\left(x^2+8x+16\right)-21\right]\)
\(=-\left[\left(x+4\right)^2-21\right]\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Dấu "=" xảy ra khi x + 4 = 0 <=> x = - 4
Vậy GTLN của A = 21 <=> x = - 4
b, \(5-x^2+2x-4y^2-4y\)
\(=7-1-1-x^2+2x-4y^2-4y\)
\(=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)
\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\forall x;y\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}x-1=0\\2x+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=-\frac{1}{2}\end{cases}}}\)
Vậy GTLN của biểu thức bằng 7 khi x = 1; y = - 1/2