K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3:

a: \(\left\{{}\begin{matrix}\dfrac{x+y}{2}=\dfrac{x-y}{4}\\\dfrac{x}{3}=\dfrac{y}{5}+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2\left(x+y\right)=x-y\\\dfrac{5x}{15}=\dfrac{3y}{15}+\dfrac{15}{15}\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x+2y=x-y\\5x=3y+15\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+3y=0\\5x-3y=15\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x+3y+5x-3y=0+15\\x=-3y\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6x=15\\x=-3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{15}{6}=\dfrac{5}{2}\\y=\dfrac{x}{-3}=\dfrac{5}{2}:\left(-3\right)=-\dfrac{5}{6}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}\left(x-1\right)\left(y+3\right)=xy+27\\\left(x-2\right)\left(y+1\right)=xy+8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}xy+3x-y-3=xy+27\\xy+x-2y-2=xy+8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x-y=30\\x-2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-2y=60\\x-2y=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6x-2y-x+2y=60-10\\x-2y=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}5x=50\\2y=x-10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=10\\2y=10-10=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=10\\y=0\end{matrix}\right.\)

1 tháng 7

Giúp mấy bài còn lại giùm mình với ạ

4 tháng 10 2021

\(1,3x+2y=7\\ \Leftrightarrow2y=7-3x\left(1\right)\)

Vì \(2y⋮2\)

\(\Leftrightarrow3x-7⋮2\\ \Leftrightarrow3x-9⋮2\\ \Leftrightarrow3\left(x-3\right)⋮2\\ \Leftrightarrow x-3⋮2\\ \Leftrightarrow x.lẻ\)

Đặt \(x=2k+1\left(k\in Z\right)\)

Thay vào (1), ta được :

\(\left(1\right)\Leftrightarrow2y=3\left(2k+1\right)-7\\ \Leftrightarrow2y=6k+3-7\\ \Leftrightarrow2y=6k-4\\ \Leftrightarrow y=3k-2\)

Vậy \(x=2k+1;y=3k-2\left(k\in Z\right)\)

\(2,C_1:\left\{{}\begin{matrix}-2x+y=1\\4x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-4x+2y=2\\4x+5y=3\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}4x+5y=2\\7y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{7}\\y=\dfrac{5}{7}\end{matrix}\right.\\ C_2:\left\{{}\begin{matrix}-2x+y=1\\4x+5y=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=1+2x\\4x+5y=3\end{matrix}\right.\Leftrightarrow4x+5+10x=3\\ \Leftrightarrow x=-\dfrac{1}{7}\Leftrightarrow y=1-\dfrac{2}{7}=\dfrac{5}{7}\)

25 tháng 9 2021

gấp lắm ạ. Mọi người giúp mình với ạ. Tối nay mình cần rồi.

18 tháng 12 2021

a: Xét tứ giác EOBM có 

\(\widehat{OBM}+\widehat{OEM}=180^0\)

Do đó: EOBM là tứ giác nội tiếp

Mọi người chỉ mình ạ! Bài 1: giải phương trình \(\sqrt{5x^2}=2x-1\)* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé * Với nhưng dạng thế nào thì có thể bình phương ạ! Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. * Nó...
Đọc tiếp

Mọi người chỉ mình ạ! 

Bài 1: giải phương trình 

\(\sqrt{5x^2}=2x-1\)

* Chỉ mình tại sao bài này nếu mà bình phương 2 vế lên có giải được ra kết quả đúng không ạ. Giair thích rõ và chi tiết giúp mình nhé 

* Với nhưng dạng thế nào thì có thể bình phương ạ! 

Bài 2: \(\sqrt{16x+16}-\sqrt{9x+9}=1\)

* Với bài này mình chưa tìm điều kiện luôn mà giải ra thành \(\sqrt{x+1}=1\) rồi tìm điều kiện \(x+1\ge0\) cũng được ạ các bạn. 

* Nó có phụ thuộc vào dạng bài không ạ hay là chỉ có những bài mới được làm như vậy còn chỉ có những bài thì phải tìm điều kiện ngay từ đầu ạ ( và làm như vậy có bị mất trường hợp nào đi không) . giải thích tại sao 

Bài 3: 

Ví dụ: \(x^2\ge2x\) . 

* Tại sao khi mà chia cả hai vế cho x thì chỉ nhân 1 trường hợp ( bị thiếu trường hợp). Còn khi mà chuyển vế sang cho lớn hơn hoặc bằng 0 thì lại đủ trường hợp. giải thích mình tại sao lại bị thiếu và đủ trường hợp ạ! 

Giups mình đầy đủ chỗ (*) nhá! 

5

Bài 1: 

ĐKXĐ: \(x\ge\dfrac{1}{2}\)

Ta có: \(\sqrt{5x^2}=2x-1\)

\(\Leftrightarrow5x^2=\left(2x-1\right)^2\)

\(\Leftrightarrow5x^2-4x^2+4x-1=0\)

\(\Leftrightarrow x^2+4x-1=0\)

\(\text{Δ}=4^2-4\cdot1\cdot\left(-1\right)=20\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-4-2\sqrt{5}}{2}=-2-\sqrt{5}\left(loại\right)\\x_2=\dfrac{-4+2\sqrt{5}}{2}=-2+\sqrt{5}\left(loại\right)\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
19 tháng 8 2021

Bài 1: Bình phương hai vế lên có giải ra được kết quả. Nhưng phải kèm thêm điều kiện $2x-1\geq 0$ do $\sqrt{5x^2}\geq 0$

PT \(\Leftrightarrow \left\{\begin{matrix} 2x-1\geq 0\\ 5x^2=(2x-1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x^2+4x-1=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2)^2-5=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ (x+2-\sqrt{5})(x+2+\sqrt{5})=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{1}{2}\\ x=-2\pm \sqrt{5}\end{matrix}\right.\) (vô lý)

Vậy pt vô nghiệm.

30 tháng 5 2021

1 số gợi ý

hpt \(\Leftrightarrow\left\{{}\begin{matrix}2x\left(2x-2y-1\right)=6\left(y+2\right)\\6y+12\sqrt{2x-1}=2y^2-2x+46\end{matrix}\right.\)(1)

Đặt \(\sqrt{2x-1}=t\left(t\ge0\right)\)

(1)\(\Leftrightarrow\left\{{}\begin{matrix}\left(t^2+1\right)\left(t^2-2y\right)=6\left(y+2\right)\left(2\right)\\6y+12t=2y^2-t^2+45\end{matrix}\right.\)

(2)\(\Leftrightarrow\left(t^2+4\right)\left(t^2-2y-3\right)=0\)

\(\Leftrightarrow t^2-2y-3=0\)

ta có hpt mới sau : \(\left\{{}\begin{matrix}t^2-2y-3=0\\2y^2-t^2+45=6y+12t\end{matrix}\right.\)

một cách trâu bò nhưng hiệu quả là

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\2y^2-t^2-6y-12t+45=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\2\left(\dfrac{t^2-3}{2}\right)^2-t^2-6\left(\dfrac{t^2-3}{2}\right)-12t+45=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{t^2-3}{2}\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=3\\t=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=3\\x=5\end{matrix}\right.\)

30 tháng 5 2021

\(\left(a,b,n\in N\right)\left\{{}\begin{matrix}n^2=a+b\\n^3+2=a^2+b^2\end{matrix}\right.\)

Áp dụng BĐT cơ bản : \(x^2+y^2\ge\dfrac{1}{2}\left(x+y\right)^2\)

\(\rightarrow n^3+2=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2=\dfrac{1}{2}\left(n^2\right)^2=\dfrac{1}{2}n^4\)

\(\Rightarrow n^3+2-\dfrac{n^4}{2}\ge0\)\(\Rightarrow0\le n\le2\)

Xét từng TH của n và kết quả nhận được là \(n=2\); (a,b) là hoán vị của (1,3)

 

31 tháng 10 2021

Bài 5: 

a: BC=10cm

b: HA=4,8cm

HB=3,6(cm)

HC=6,4(cm)

31 tháng 10 2021

Bạn ơi, làm như vậy thì quá ngắn rồi ạ, với lại bạn làm thiếu mất đề bài của mình rồi 

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

c.

\(\left\{\begin{matrix} 9x-6y=4\\ 15x-10y=7\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=\frac{6y+4}{9}\\ 15x-10y=7\end{matrix}\right.\)

\(\Rightarrow 15.\frac{6y+4}{9}-10y=7\)

\(\Leftrightarrow \frac{5}{3}(6y+4)-10y=7\Leftrightarrow \frac{20}{3}=7\) (vô lý)

Do đó hpt vô nghiệm.

d.

\(\left\{\begin{matrix} 4x+5y=3\\ x-3y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 4x+5y=3\\ x=3y+5\end{matrix}\right.\Rightarrow 4(3y+5)+5y=3\)

\(\Leftrightarrow 17y+20=3\Leftrightarrow 17y=-17\Leftrightarrow y=-1\)

\(x=3y+5=-3+5=2\)

Vậy HPT có nghiệm $(x,y)=(2,-1)$

Các câu còn lại bạn làm theo pp tương tự.

AH
Akai Haruma
Giáo viên
13 tháng 8 2021

1.

HPT \(\Leftrightarrow \left\{\begin{matrix} 5x-y=4\\ 3x-y=5\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} 5x-y=4\\ y=3x-5\end{matrix}\right.\)

\(\Rightarrow 5x-(3x-5)=4\Leftrightarrow 2x+5=4\Leftrightarrow 2x=-1\Leftrightarrow x=\frac{-1}{2}\)

\(y=3x-5=\frac{-3}{2}-5=\frac{-13}{2}\)

Vậy HPT có nghiệm $(x,y)=(\frac{-1}{2}, \frac{-13}{2})$