K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2021

1: Thay x=16 vào A, ta được:

\(A=\dfrac{2\cdot4}{4+3}=\dfrac{8}{7}\)

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
a. Vì hệ số góc $2>0$ nên hàm số đồng biến trên $R$

b. Đồ thị $y=2x-3$ như sau:

c. Để hai đt đã cho cắt nhau thì $2\neq m+1$

$\Leftrightarrow m\neq 1$

Vạy $m\neq \pm 1$ để 2 đt cắt nhau.

NV
15 tháng 4 2022

Áp dụng hệ thức lượng:

\(AH^2=BH.CH=4.9=36\)

\(\Rightarrow AH=6\left(cm\right)\)

\(BC=4+9=13\left(cm\right)\)

- Nếu \(BH=4\) 

Áp dụng hệ thức lượng:

\(AB^2=BH.BC\Rightarrow AB=\sqrt{4.13}=2\sqrt{13}\) (cm)

\(sinC=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{13}\Rightarrow C\approx33^041'\)

- Nếu \(BH=9\Rightarrow AB=\sqrt{BH.BC}=\sqrt{9.13}=3\sqrt{13}\left(cm\right)\)

\(sinC=\dfrac{AB}{BC}=\dfrac{3\sqrt{13}}{13}\Rightarrow C\approx56^019'\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.6.13=39\left(cm^2\right)\)

15 tháng 4 2022

(Vì đề không nói rõ BH, CH bằng 4 hay 9 nên mình cho BH = 4 và CH = 9 nhé!)

Áp dụng HTL vào \(\Delta ABC\) vuông tại A đường cao AH:

\(AH^2=BH\cdot HC\Leftrightarrow AH=\sqrt{BH\cdot HC}=\sqrt{4\cdot9}=6\left(cm\right)\)

Áp dụng HTL vào \(\Delta ABH\) vuông tại H:

\(AB^2=AH^2+BH^2\Leftrightarrow AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)

Áp dụng tslg vào \(\Delta ABC\) vuông tại A, đường cao AH:

\(\sin\widehat{C}=\dfrac{AB}{BC}=\dfrac{2\sqrt{13}}{4+9}\approx34^0\)

\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot2\sqrt{13}\cdot\left(\sqrt{13^2-\left(2\sqrt{13}\right)^2}\right)_{Pytago}=39cm^2\)

Câu 4: D

Câu 5: C

Câu 6: A

loading...  loading...  

ĐẶT x-1=a  , x+3=b   (a,b cùng dấu)

\(PT\Leftrightarrow ab+2a\sqrt{\frac{b}{a}}=8\)

\(\Leftrightarrow2a\sqrt{\frac{b}{a}}=8-ab\)

\(\Leftrightarrow4a^2\frac{b}{a}=64-16ab+a^2b^2\)

\(\Leftrightarrow a^2b^2-20ab+64=0\)

\(\Leftrightarrow\left(ab-10\right)^2-36=0\)

\(\Leftrightarrow\left(ab-4\right)\left(ab-16\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}ab=4\\ab=16\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)\left(x+3\right)=4\\\left(x-1\right)\left(x+3\right)=16\end{cases}}\)

Đến đây đơn giản rồi bn tự giải nhé

26 tháng 7 2019

ĐK:....\(\frac{x+3}{x-1}\ge0\)

<=> \(\left(x-1\right)\left(x+3\right)+2\sqrt{\left(x-1\right)\left(x+3\right)}+1=9\)

<=> \(\left(\sqrt{\left(x-1\right)\left(x+3\right)}+1\right)^2=9\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{\left(x-1\right)\left(x+3\right)}=2\\\sqrt{\left(x-1\right)\left(x+3\right)}=-4\left(loai\right)\end{cases}}\)

\(\Leftrightarrow\left(x-1\right)\left(x+3\right)=4\)

Em tự làm tiếp nhé