K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 5 2021

Pt hoành độ giao điểm:

\(x^2=mx+3-m\Leftrightarrow x^2-mx+m-3=0\) 

\(\Delta=m^2-4\left(m-3\right)=\left(m-2\right)^2+8>0\) ; \(\forall m\)

\(\Rightarrow\) (d) luôn cắt (P) tại 2 điểm pb

Giả sử hoành độ của 2 giao điểm lần lượt là \(x_1< x_2\) 

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-3\end{matrix}\right.\)

M nằm giữa 2 giao điểm khi và chỉ khi: \(x_1< x_M< x_2\)

\(\Leftrightarrow x_1< 1< x_2\Leftrightarrow\left(x_1-1\right)\left(x_2-1\right)< 0\)

\(\Leftrightarrow x_1x_2-\left(x_1+x_2\right)+1< 0\)

\(\Leftrightarrow-2< 0\) (luôn đúng)

Vậy (d) cắt (P) tại 2 điểm nằm về 2 phía của M với mọi m

31 tháng 10 2021

Bài 2: 

BC=6,5(cm)

AH=3(cm)

\(AB=\sqrt{BH\cdot BC}=\sqrt{13}\left(cm\right)\)

\(AC=\sqrt{CH\cdot BC}=\dfrac{3}{2}\sqrt{13}\left(cm\right)\)

31 tháng 10 2021

Dạ em cần câu trả lời rõ hơn á chị🥺

19 tháng 3 2021

không có câu hỏi ạ

19 tháng 3 2021

undefined

13 tháng 7 2021

\(P=\left(\dfrac{x-1}{\sqrt{x}+1}-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}}+1\right).\dfrac{1}{x\sqrt{x}+1}\)

\(=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}-\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}\left(\sqrt{x}-1\right)}+1\right).\dfrac{1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\left(\sqrt{x}-1-\dfrac{\sqrt{x}-1}{\sqrt{x}}+1\right).\dfrac{1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-\left(\sqrt{x}-1\right)+\sqrt{x}}{\sqrt{x}}.\dfrac{1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}.\dfrac{1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}=\dfrac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}\)

Bài 2: 

Ta có: \(P=\left(\dfrac{x-1}{\sqrt{x}+1}-\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}}+1\right)\cdot\dfrac{1}{x\sqrt{x}+1}\)

\(=\left(\sqrt{x}-1-\dfrac{\sqrt{x}-1}{\sqrt{x}}+1\right)\cdot\dfrac{1}{x\sqrt{x}+1}\)

\(=\dfrac{x-\sqrt{x}+1}{\sqrt{x}}\cdot\dfrac{1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\dfrac{1}{x+\sqrt{x}}\)

8 tháng 12 2021

\(a,B=4\sqrt{x+1}-3\sqrt{x+1}+\sqrt{x+1}+2\sqrt{x+1}=4\sqrt{x+1}\\ b,B=8\Leftrightarrow4\sqrt{x+1}=8\\ \Leftrightarrow\sqrt{x+1}=2\\ \Leftrightarrow x+1=4\\ \Leftrightarrow x=3\left(tm\right)\)

23 tháng 10 2021

bài 3: 

b: \(\dfrac{2}{\sqrt{3}+1}+\dfrac{1}{2-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}\)

\(=\sqrt{3}-1+2+\sqrt{3}+\sqrt{3}-1\)

\(=3\sqrt{3}\)

NV
31 tháng 3 2023

Do (d) đi qua E và G nên thay tọa độ E và G vào pt (d) ta được:

\(\left\{{}\begin{matrix}a.1+b=-3\\a.\left(-2\right)+b=6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=-3\\-2a+b=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3a=-9\\-2a+b=6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-3\\b=0\end{matrix}\right.\)

Vậy pt (d) là: \(y=-3x\)

NV
31 tháng 3 2023

Do (d) đi qua C và D, thay tọa độ C và D vào pt (d) ta được:

\(\left\{{}\begin{matrix}a.\left(-1\right)+b=1\\a.\left(-2\right)+b=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-a+b=1\\-2a+b=-3\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=4\\b=5\end{matrix}\right.\)

Phương trình (d) có dạng: \(y=4x+5\)