Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: PTHĐGĐ là:
x^2=-2x-1
=>x^2+2x+1=0
=>(x+1)^2=0
=>x=-1
Khi x=-1 thì y=(-1)^2=1
Hình vẽ nhỏ quá. Bạn nên gõ đề bằng công thức toán để được hỗ trợ tốt hơn.
1) \(B=\dfrac{\sqrt{x}-5}{\sqrt{x}}\)
Thay \(x=\dfrac{4}{25}\) vào B, ta được:
\(B=\dfrac{\sqrt{\dfrac{4}{25}}-5}{\sqrt{\dfrac{4}{25}}}\)
\(=\dfrac{\dfrac{2}{5}-5}{\dfrac{2}{5}}\)
\(=\dfrac{-\dfrac{23}{5}}{\dfrac{2}{5}}\)
\(=-\dfrac{23}{2}\)
2) ĐKXĐ: \(x\ne9;x\ge0\)
\(A=\dfrac{2\sqrt{x}}{\sqrt{x}-3}+\dfrac{x+9\sqrt{x}}{9-x}\)
\(=\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{x+9\sqrt{x}}{x-9}\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{x+9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x+6\sqrt{x}-x-9\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x-3\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
3) \(P=A.B\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}+3}.\dfrac{\sqrt{x}-5}{\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-5}{\sqrt{x}+3}\)
\(=\dfrac{\sqrt{x}+3-8}{\sqrt{x}+3}\)
\(=1-\dfrac{2}{\sqrt{x}+3}\)
Để P nhỏ nhất thì \(\dfrac{8}{\sqrt{x}+3}\) lớn nhất
Ta có:
\(\dfrac{8}{\sqrt{x}+3}\ge\dfrac{8}{3}\)
\(\Rightarrow P\) nhỏ nhất là \(1-\dfrac{8}{3}=-\dfrac{5}{3}\) khi \(x=0\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1x_2=-\dfrac{7}{2}\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\dfrac{37}{4}\)
\(B=x_1^3+x_2^3=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)=\dfrac{153}{8}\)
\(C=x_1^4+x_2^4=\left(x_1^2+x_2^2\right)^2-2\left(x_1x_2\right)^2=\dfrac{977}{16}\)
\(D=\left|x_1-x_2\right|=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\dfrac{\sqrt{65}}{2}\)
\(E=\left(2x_1+x_2\right)\left(2x_2+x_1\right)=2\left(x_1^2+x_2^2\right)+5x_1x_2=1\)
`3x^2+10x+3=0`
Ptr có: `\Delta'=5^2-3.3=16 > 0`
`=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=-10/3),(x_1 .x_2=c/a=1):}`
~~~~~~~~~~~~~
`A=x_1 ^2+x_2 ^2`
`A=(x_1+x_2)^2-2x_1 .x_2`
`A=(-10/3)^2-2.1=82/9`
_______________________________________________________
`B=x_1 ^3+x_2 ^3`
`B=(x_1+x_2)(x_1 ^2-x_1 .x_2+x_2 ^2)`
`B=(x_1+x_2)[(x_1+x_2)^2 -3x_1 .x_2]`
`B=(-10/3).[(-10/3)^2-3.1]=-730/27`
_______________________________________________________
`C=x_1 ^4+x_2 ^4`
`C=(x_1 ^2+x_2 ^2)^2 -2x_1 ^2 .x_2 ^2`
`C=[(x_1+x_2)^2-2x_1 .x_2]^2-2(x_1 .x_2)^2`
`C=[(-10/3)^2-2.1]^2-2. 1^2=6562/81`
_______________________________________________________
`D=|x_1-x_2|`
`D=\sqrt{(x_1-x_2)^2}`
`D=\sqrt{(x_1+x_2)^2-4x_1.x_2}`
`D=\sqrt{(-10/3)^2-4.1}=8/3`
_______________________________________________________
`E=(2x_1+x_2)(2x_2+x_1)`
`E=4x_1 .x_2+2x_1 ^2+2x_2 ^2+x_1 .x_2`
`E=5x_1 . x_2+2(x_1+x_2)^2-4x_1 .x_2`
`E=x_1 .x_2+2(x_1+x_2)^2`
`E=1+2(-10/3)^2=209/9`
`a,` Đthang đi qua `A(3, 12)`.
`-> x = 3, y = 12 in y`.
`<=> 12 = 9a.`
`<=> a = 12/9 = 4/3.`
`b,` Đthang đi qua `B(-2;3)`.
`=> x = -2, y = 3 in y`.
`<=> 3=4a`.
`<=> a = 3/4`.
1: \(A=\dfrac{\left(x+1\right)^3}{\left(x+1\right)^2}=x+1\)
\(B=\dfrac{\left(x+1\right)\cdot\left(x^2-x+1\right)}{x+1}=x^2-x+1\)
2: A=B
=>x^2-x+1=x+1
=>x^2-2x=0
=>x=0 hoặc x=2