K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 2 2016

(x+1)(x+2)(x+4)(x+5)=24

           x(1+2+4+5)  = 24

                      x12  = 24

                        x   = 24:12

                        x    = 2

      

2 tháng 3 2016

a , nếu bạn chú ý bạn sẽ nhận ra đặc điểm của câu toán này 

2 tháng 3 2016

( x+2)(x+5)(x+4)(x+3) = 24 

<=> (x+ 5x + 2x + 10)( x+ 3x+4x+12 ) = 24

<=> ( x2 +7x+10)(x2+7x+12) = 24 

Đặt x+ 7x = t 

Thay t vào phương trình , ta có 

 ( t + 10)(t+12) = 24

<=> t2 + 12t + 10t + 120 - 24 = 0

<=> t2 + 22t + 96 = 0 

<=> t2 + 6t + 16t + 96 = 0

<=> t( t+6)+16(t+6) = 0

<=> (t+16)(t+6) = 0 

=> t+ 16 = 0 => t= -16

hoặc t+6=0 => t= - 6

rồi từ đó giải phương trình x2+ 7x = -16 và phương trình x2+7x = -6 

x là tất cả các giá trị tìm được 

14 tháng 2 2016

(x - 5)2 - 4(x + 7) = x(x + 1)

=> x2 - 10x + 25 - 4x - 28 = x2 + x

=> -15x - 3= 0

=> -15x = 3

=> x = -1/5

14 tháng 2 2016

áp dụng delta ta có :

\(\Leftrightarrow x^2-14x-3=x^2+x\)

\(\Rightarrow\left(-15\right)^2-\left(4.0-3\right)=225\)

\(\Rightarrow x_{1,2}=\frac{-b+-\sqrt{D}}{2a}=\frac{+-\sqrt{225}+\left(15\right)}{0}\)

\(\Rightarrow x=\frac{-1}{5}\)

 

 

 

 

20 tháng 1 2020

\(x\left(x-1\right)\left(x+1\right)\left(x+2\right)=24\)

<=> \(\left[x\left(x+1\right)\right]\left[\left(x-1\right)\left(x+2\right)\right]-24=0\)

<=> \(\left(x^2+x\right)\left(x^2+2x-x-2\right)-24=0\)

<=> \(\left(x^2+x\right)\left(x^2+x-2\right)-24=0\)

Đặt t = x2 + x 

<=> t(t - 2) - 24 = 0

<=> t2 - 2t - 24 = 0

<=> t2 - 6t + 4t - 24 = 0

<=> (t + 4)(t - 6) = 0

<=> \(\orbr{\begin{cases}x^2+x+4=0\\x^2+x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x^2+x+\frac{1}{4}\right)+\frac{15}{4}=0\\x^2+3x-2x-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x+\frac{1}{2}\right)^2+\frac{15}{4}=0\left(ktm\right)\\\left(x-2\right)\left(x+3\right)=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Vậy S = {2; -3}

(lưu ý: thay "ktm" thành vô lý và giải thích thêm)

\(\left(x+3\right)^4+\left(x+5\right)^4=2\)

<=> (x + 4 - 1)4 + (x + 4 + 1)4 - 2 = 0

Đặt y = x + 4

<=> (y - 1)4 + (y + 1)4 - 2 = 0

<=> y4 - 4y3 + 6y2 - 4y + 1 + y4 + 4y3 + 6y2 + 4y + 1 - 2 = 0

<=> 2y4 + 12y2 = 0

<=> 2y2(y2 + 6) = 0

<=> \(\orbr{\begin{cases}y^2=0\\y^2+6=0\left(ktm\right)\end{cases}}\)

<=> y = 0

<=> x + 4 = 0

<=> x = -4

Vậy S = {-4}

20 tháng 1 2020

\(\frac{x^2+x+4}{2}+\frac{x^2+x+7}{3}=\frac{x^2+x+13}{5}+\frac{x^2+x+16}{6}\)

<=> \(\frac{x^2+x+4}{2}-3+\frac{x^2+x+7}{3}-3=\frac{x^2+x+13}{5}-3+\frac{x^2+x+16}{6}-3\)

<=> \(\frac{x^2+x+4-6}{2}+\frac{x^2+x+7-9}{3}=\frac{x^2+x+13-15}{5}+\frac{x^2+x+16-18}{6}\)

<=> \(\frac{x^2+x-2}{2}+\frac{x^2+x-2}{3}=\frac{x^2+x-2}{5}+\frac{x^2+x-2}{6}\)

<=> \(\left(x^2+2x-x-2\right)\left(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\right)=0\)

<=> (x + 2)(x - 1) = 0 (do \(\frac{1}{2}+\frac{1}{3}-\frac{1}{5}-\frac{1}{6}\ne0\))

<=> \(\orbr{\begin{cases}x+2=0\\x-1=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=-2\\x=1\end{cases}}\)

Vậy S = {-2; 1}

câu cuối: + 3 vào sau các phân số của pt như trên

2:

a: =>x-1=0 hoặc 3x+1=0

=>x=1 hoặc x=-1/3

b: =>x-5=0 hoặc 7-x=0

=>x=5 hoặc x=7

c: =>\(\left[{}\begin{matrix}x-1=0\\x+5=0\\3x-8=0\end{matrix}\right.\Leftrightarrow x\in\left\{1;-5;\dfrac{8}{3}\right\}\)

d: =>x=0 hoặc x^2-1=0

=>\(x\in\left\{0;1;-1\right\}\)

18 tháng 4 2023

Bạn tách ra từng câu thoi nhe .

7 tháng 4 2020

\(\left(x^2+1\right)\left(x-\frac{1}{2}\right)=0\)

Vì x2 > 0 => x2+1 >0

=> \(x-\frac{1}{2}=0\)

=> \(x=\frac{1}{2}\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x-2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}}\)

*) \(x^2-2=3x-4\)

7 tháng 4 2020

*) x2-2=3x-4

<=> x2-2-3x+4=0

<=> x2-3x+2=0

<=> x2-x-2x+2=0

<=> x(x-1)-2(x-1)=0

<=> (x-1)(x-2)=0

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)

12 tháng 6 2020

Bài làm:

a) \(4x\left(x+2\right)=4x^2-24\)

\(\Leftrightarrow4x^2+8x=4x^2-24\)

\(\Leftrightarrow8x=-24\)

\(\Leftrightarrow x=-3\)

Vậy tập nghiệm của phương trình \(S=\left\{-3\right\}\)

b) \(\frac{x-2}{3}< \frac{8x-5}{9}\)

\(\Leftrightarrow\frac{3\left(x-2\right)}{9}< \frac{8x-5}{9}\)

\(\Leftrightarrow3x-6< 8x-5\)

\(\Leftrightarrow-5x< 1\)

\(\Leftrightarrow x>-\frac{1}{5}\)

Vậy \(x>-\frac{1}{5}\)

c) đkxđ: \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\\x^2-4\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}}\)

Ta có: \(\frac{3}{x-2}+\frac{2}{x+2}=\frac{2x+5}{x^2-4}\)

\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x+5}{\left(x-2\right)\left(x+2\right)}\)

\(\Rightarrow3\left(x+2\right)+2\left(x-2\right)=2x+5\)

\(\Leftrightarrow3x+6+2x-4=2x+5\)

\(\Leftrightarrow3x=3\)

\(\Leftrightarrow x=1\left(tm\right)\)

Vậy tập nghiệm của phương trình \(S=\left\{1\right\}\)

Học tốt!!!!

25 tháng 1 2018

\(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)-24\)

\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)-24\)

Đặt   \(x^2+5x+4=a\)ta có:

                  \(a\left(a+2\right)-24\)

              \(=a^2+2a+1-25\)

              \(=\left(a+1\right)^2-25\)

              \(=\left(a-4\right)\left(a+6\right)\)

Thay trở lại ta được:

                  \(\left(x^2+5x\right)\left(x^2+5x+10\right)\)

=>x^2+8x+15=x^2+6x+8

=>8x+15=6x+8

=>2x=-7

=>x=-7/2

12 tháng 2 2023

Đề: 

`=> x^2 + 3x + 5x + 15 = 2x + 8 + x^2 + 4x`

`=> x^2 + 8x + 15 = x^2 + 6x + 8`

`=> x^2 - x^2 + 8x - 6x + 15 - 8 = 0`

`=> 2x + 7 = 0`

`=> 2x = -7`

`=> x = -7/2`

Vậy `x = -7/2`

 

4 tháng 5 2018

Taco:VD:2.3.4.5>24=>x<0

x=-2=>tổng=0

Vayx=-1

4 tháng 5 2018

\(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)=24\)

\(\Leftrightarrow\left(x+1\right)\left(x+6\right)\left(x^2+7x+16\right)=0\)