Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(f\left(x\right)=2x^2\left(x-1\right)-5\left(x+2\right)-2x\left(x-2\right)\)
\(=2x^3-2x^2-5x-10-2x^2+4x\)
\(=2x^3-4x^2-x-10\)
Bậc là 3
Ta có: \(g\left(x\right)=x^2\left(2x-3\right)-x\left(x+1\right)-\left(3x-2\right)\)
\(=2x^3-3x^2-x^2-x-3x+2\)
\(=2x^3-4x^2-4x+2\)
b) Ta có: h(x)=f(x)-g(x)
\(=2x^3-4x^2-x-10-2x^3+4x^2+4x-2\)
\(=3x-12\)
Đặt h(x)=0
nên 3x-12=0
hay x=4
a2+ab+b23=25⇒a2+ab+b2325=1a2+ab+b23=25⇒a2+ab+b2325=1
Tương tự :c2+b239=1;a2+ac+c216=1c2+b239=1;a2+ac+c216=1
Áp dụng t/c dãy tỉ số bằng nhau , ta có
c2+b239=a2+ac+c216=2c2+ac+b23+a225c2+b239=a2+ac+c216=2c2+ac+b23+a225
⇒a2+ab+b2325=2c2+ac+a2+b2325⇒a2+ab+b23=2c2+ac+a2+b23⇒a2+ab+b2325=2c2+ac+a2+b2325⇒a2+ab+b23=2c2+ac+a2+b23
⇒ab=2c2+ac⇒ab+ac=2c2+2ac⇒a(b+c)=2c(a+c)⇒2ca=b+ca+c (đpcm)
\(a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)
Ta có :
\(a^2+b^2+c^2+d^2+e^2\)
\(=\left(\dfrac{a^2}{4}+b^2\right)+\left(\dfrac{a^2}{4}+c^2\right)+\left(\dfrac{a^2}{4}+d^2\right)+\left(\dfrac{a^2}{4}+e^2\right)\)
Ta lại có :
\(\left(\dfrac{a}{2}-b\right)^2\ge0\Leftrightarrow\) \(\dfrac{a^2}{4}-ab+b^2\ge0\) \(\dfrac{\Rightarrow a^2}{4}+b^2\ge ab\)
Tương tự :
\(\dfrac{a^2}{4}+c^2\ge ac\)
\(\dfrac{a^2}{4}+d^2\ge ad\)
\(\dfrac{a^2}{4}+e^2\ge ae\)
\(\Rightarrow\left(\dfrac{a^2}{4}+b^2\right)+\left(\dfrac{a^2}{4}+c^2\right)+\left(\dfrac{a^2}{4}+d^2\right)+\left(\dfrac{a^2}{4}+e^2\right)\ge ab+ac+ad+ae\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2\ge ab+ac+ad+ae\)
Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)
Thay vào từng vế ta có
\(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)
\(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)
Từ (1) và (2) => ĐPCM
a/b=c/d
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có :
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2
=> a/c.b/d= ( a+b/c+d ) mũ 2
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2
=> dpcm
Ta có \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a.b}{c.d}\left(1\right)\)
Áp dụng tính chất dãy tỉ số bằng nhau tao có
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(2\right)\)
Từ (1) và (2) ta có ĐPCM
a, \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2-b^2}{c^2-d^2}\left(1\right)\)
\(\frac{a^2}{c^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\left(2\right)\)
Từ (1) và (2) => đpcm
b, Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk,c=dk\)
Có: \(\left(\frac{a-b}{c-d}\right)^2=\left(\frac{bk-b}{dk-d}\right)^2=\left[\frac{b\left(k-1\right)}{d\left(k-1\right)}\right]^2=\left(\frac{b}{d}\right)^2\left(1\right)\)
\(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}=\left(\frac{b}{d}\right)^2\left(2\right)\)
Từ (1) và (2) => đpcm
Đặt a/b =c/d =k =>a =bk ,c =dk
Ta có: ab/cd =bk.b /dk.d =b^2.k /d^2 .k =(b/d)^2 (1)
(a+b)^2 /(c+d)^2 =(bk+b/dk+d)^2 =[b(k+1)/d(k+1)]^2 =(b/d)^2 (2)
Từ(1)(2) suy ra ab/cd =(a+b)^2 /(c+d)^2