Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian người 2 làm một mình là x
=>Thời gian người 1 làm một mình là x+5
Theo đề, ta có: \(\dfrac{1}{x}+\dfrac{1}{x+5}=\dfrac{1}{6}\)
=>\(\dfrac{x+5+x}{x\left(x+5\right)}=\dfrac{1}{6}\)
=>x^2+5x=6(2x+5)
=>x^2-7x-30=0
=>(x-10)(x+3)=0
=>x=10
=>Người 1 cần 15h
Gọi thời gian người thứ nhất làm một mình hết công việc là x(giờ) và thời gian người thứ hai làm một mình hết công việc(Điều kiện: x>0;y>0)
Thời gian người thứ hai làm một mình hết công việc là: \(y=\dfrac{3}{2}x\)(giờ)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được: \(\dfrac{1}{24}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{24}\)(2)
Vì khi làm một mình làm xong công việc thì người thứ hai mất một thời gian bằng 3/2 thời gian làm việc của người thứ nhất nên khi làm một mình trong 1 giờ thì người thứ hai cũng mất một thời gian bằng 3/2 thời gian làm việc trong 1 giờ của người thứ nhất
hay \(\dfrac{1}{x}=\dfrac{3}{2}\cdot\dfrac{1}{y}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{24}\\\dfrac{1}{x}=\dfrac{3}{2}\cdot\dfrac{1}{y}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{2}\cdot\dfrac{1}{y}+\dfrac{1}{y}=\dfrac{1}{24}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{2}\cdot\dfrac{1}{y}=\dfrac{1}{24}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{24}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{y}=\dfrac{1}{60}\\\dfrac{1}{x}+\dfrac{1}{60}=\dfrac{1}{24}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=60\\\dfrac{1}{x}=\dfrac{1}{24}-\dfrac{1}{60}=\dfrac{1}{40}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=40\\y=60\end{matrix}\right.\)(thỏa ĐK)
Vậy: Người thứ nhất cần 40 giờ để hoàn thành công việc khi làm một mình
Người thứ hai cần 60 giờ để hoàn thành công việc khi làm một mình
Ủa bạn ơi bài này bạn dùng kiến thức phương trình bậc nhất một ẩn phải ko ạ ?
Gọi x(h) là thời gian người thứ hai hoàn thành công việc khi làm một mình(Điều kiện: x>0)
Thời gian người thứ nhất hoàn thành công việc khi làm một mình là:
x+6(h)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x+6}\)(công việc)
Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, hai người làm được: \(\dfrac{1}{4}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x+6}+\dfrac{1}{x}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{4x}{4x\left(x+6\right)}+\dfrac{4\left(x+6\right)}{4x\left(x+6\right)}=\dfrac{x\left(x+6\right)}{4x\left(x+6\right)}\)
Suy ra: \(x^2+6x=8x+24\)
\(\Leftrightarrow x^2-2x-24=0\)
\(\Leftrightarrow x^2-6x+4x-24=0\)
\(\Leftrightarrow x\left(x-6\right)+4\left(x-6\right)=0\)
\(\Leftrightarrow\left(x-6\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\left(nhận\right)\\x=-4\left(loại\right)\end{matrix}\right.\)
Vậy: Người thứ nhất cần 12 giờ để hoàn thành công việc khi làm một mình
Người thứ hai cần 6 giờ để hoàn thành công việc khi làm một mình
Gọi thời gian để hoàn thành công việc khi làm một mình của người thứ nhất là x giờ (x > 24)
Năng suất làm việc của người thứ nhất là , năng suất làm việc làm việc của người thứ hai là
Thời gian để hoàn thành công việc khi làm một mình của người thứ hai là
Năng suất làm việc của cả hai người khi cùng làm công việc là . Do đó ta có phương trình:
Vậy thời gian để người thứ nhất làm một mình để hoàn thành công việc là 40 giờ, thời gian để hoàn thành công việc của người thứ hai là
Gọi 1h công nhân thứ 1,2 làm được a,ba,b (phần công việc )
Theo bài ta có :18(a+b)=1
6a+12b=1\2
{a=1\36
b=1\36
→→ Nếu làm riêng thì mỗi người hoàn thành công việc đó trong 36h
*tk
Gọi thời gian người thứ nhất làm 1 mình xong công việc là x(h)
Gọi thời gian người thứ hai làm một mình xong việc là y(h),(x,y>18)
Trong 1 giờ người thứ nhất làm được :x (công việc); người thứ 2 làm được :y (công việc).
Vì 2 người cùng làm thì trong 18h thì xong việc nên nên ta có phương trình sau: x+y=118(1)
Nếu người thứ nhất làm 6h và người thứ 2 làm 12h thì chỉ hoàn thành được 50% công việc nên ta có phương trình sau: 6x+12y=50%=12(2)
Từ (1) và (2) ta có hệ phương trình:
x+y=118 và6x+12y=12
x=36(tm) và y=36(tm
Vậy thời gian người thứ nhất làm 1 mình xong công việc là 36h, thời gian người thứ hai làm một mình xong việc là 36h.
Gọi thời gian làm riêng hoàn thành công việc của người thứ nhất và người thứ hai lần lượt là x(giờ) và y(giờ)
(Điều kiện: x>0 và y>0)
Trong 1 giờ, người thứ nhất làm được \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được \(\dfrac{1}{18}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\left(1\right)\)
Trong 6 giờ, người thứ nhất làm được \(6\cdot\dfrac{1}{x}=\dfrac{6}{x}\)(công việc)
Trong 12 giờ, người thứ hai làm được \(12\cdot\dfrac{1}{y}=\dfrac{12}{y}\left(côngviệc\right)\)
Nếu người thứ nhất làm trong 6 giờ và người thứ hai làm trong 12 giờ thì hai người làm được 50% công việc nên ta có:
\(\dfrac{6}{x}+\dfrac{12}{y}=\dfrac{1}{2}\left(2\right)\)
Từ (1),(2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\\\dfrac{6}{x}+\dfrac{12}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{12}{x}+\dfrac{12}{y}=\dfrac{12}{18}=\dfrac{2}{3}\\\dfrac{6}{x}+\dfrac{12}{y}=\dfrac{1}{2}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\dfrac{6}{x}=\dfrac{2}{3}-\dfrac{1}{2}=\dfrac{1}{6}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{18}\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=36\\y=36\end{matrix}\right.\left(nhận\right)\)
Vậy: Thời gian làm riêng hoàn thành công việc của người thứ nhất là 36 giờ
Thời gian làm riêng hoàn thành công việc của người thứ hai là 36 giờ
cảm ơn nha