Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x.\left(x+1\right)=2+4+6+...+2500\)
=>\(x.\left(x+1\right)=\left[\left(2500-2\right):2+1\right].\left(2500+2\right):2\)
=>\(x.\left(x+1\right)=1250.2502:2\)
=>\(x.\left(x+1\right)=1250.1251\)
Vì: x và x+1 là 2 số tự nhiên liên tiếp x<x+1
1250 và 1251 là 2 số tự nhiên liên tiếp 1250<1251
=>x=1250
\(a,3\cdot x-15=x+35\)
\(\Rightarrow3x-x=35+15\)
\(\Rightarrow 2x=50\)
\(\Rightarrow x = 50:2\)
\(\Rightarrow x= 25\)
\(b,(8x-16)(x-5)=0\)
\(+, TH1: 8x-16=0\)
\(\Rightarrow8x=16\)
\(\Rightarrow x = 16:8\)
\(\Rightarrow x=2\)
\(+,TH2: x-5=0\)
\(\Rightarrow x =5\)
\(c,x(x+1)=2+4+6+8+10+...+2500\) \(^{\left(1\right)}\)
Đặt \(A=2+4+6+8+10+...+2500\)
Số các số hạng của \(A\) là: \(\left(2500-2\right):2+1=1250\left(số\right)\)
Tổng \(A\) bằng: \(\left(2500+2\right)\cdot1250:2=1563750\)
Thay \(A=1563750\) vào \(^{\left(1\right)}\), ta được:
\(x\left(x+1\right)=1563750\)
\(\Rightarrow x\left(x+1\right)=1250\cdot1251\)
\(\Rightarrow x =1250\)
#\(Toru\)
1/ 1 + 2 + 3 + ... + x = 55
(1 + x) × x : 2 = 55
(1 + x) × x = 55 × 2
(1 + x) × x = 110
(1 + x) × x = 11 × 10
=> x = 10
Vậy x = 10
b) 2 + 4 + 6 + ... + 2x = 110
2 × (1 + 2 + 3 + ... + x) = 110
1 + 2 + 3 + ... + x = 110 : 2
1 + 2 + 3 + ... + x = 55
Tiếp thep lm tương tự câu trên
1. Tính tổng:
Số số hạng có trong tổng là:
(999-1):1+1=999 (số)
Số cặp có là:
999:2=499 (cặp) và dư một số đó là số 500
Bạn hãy gộp số đầu và số cuối:
(999+1)+(998+2)+.........+ . 499(số cặp) + 500 = 50400
Vậy tổng S1 = 50400
Mih sẽ giải tiếp nha
Số tự nhiên a sẽ chia hết cho 4 vì:
36+12=48 sẽ chia hết co 4
Số a ko chia hết cho 9 vì:
4+8=12 ko chia hết cho 9
1) \(3^x+3^{x+1}+3^{x+2}=351\)
\(\Rightarrow3^x\left(1+3^1+3^2\right)=351\)
\(\Rightarrow3^x.13=351\)
\(\Rightarrow3^x=27\)
\(\Rightarrow3^x=3^3\)
\(\Rightarrow x=3\)
2) \(C=2+2^2+2^3+2^4+...+2^{97}+2^{98}+2^{99}+2^{100}\)
\(\Rightarrow C=\left(2+2^2+2^3+2^4\right)+2^4\left(2+2^2+2^3+2^4\right)...+2^{96}\left(2+2^2+2^3+2^4\right)\)
\(\Rightarrow C=30+2^4.30...+2^{96}.30\)
\(\Rightarrow C=\left(1+2^4+...+2^{96}\right).30⋮30\)
mà \(30=5.6\)
\(\Rightarrow C⋮5\left(dpcm\right)\)
1,
Có \(3^x\)+ \(3^{x+1}\) + \(3^{x+2}\) = \(351\)
=> \(3^x\) + \(3^x\).\(3\) + \(3^x\).\(9\) = \(351\)
=> \(3^x\).\(13\) = \(351\)
=> \(3^x\) = \(27\)
=> \(x\) = \(3\)
2,
C = \(2\) + \(2^2\) + \(2^3\) + ... + \(2^{100}\)
2C = \(2^2\) + \(2^3\) + \(2^4\) + ... + \(2^{101}\)
2C - C = \(2^{101}\) - \(2\)
C = \(2^{101}\) - \(2\)
C = \(2\).\(\left(2^{100}-1\right)\)
C = 2.\(\left(\left(2^5\right)^{20}-1^{20}\right)\)
Có \(2^5\) \(-1\) \(⋮\) 5
=> \(\left(\left(2^5\right)^{20}-1^{20}\right)\) \(⋮\) 5
=> C \(⋮\) 5
3,
Xét \(\overline{abcdeg}\)
= \(\overline{ab}\).\(10000\) + \(\overline{cd}\).\(100\) + \(\overline{eg}\)
= \(\left(\overline{ab}+\overline{cd}+\overline{eg}\right)\) + \(9.\left(1111.\overline{ab}+11.\overline{cd}\right)\)
Có\(\left\{{}\begin{matrix}9.\left(1111.\overline{ab}+11.\overline{cd}\right)⋮9\left(1111.\overline{ab}+11.\overline{cd}\inℕ^∗\right)\\\overline{ab}+\overline{cd}+\overline{eg}⋮9\end{matrix}\right.\)
=> \(\overline{abcdeg}⋮9\)
4,
S = \(3^0+3^2+3^4+...+3^{2002}\)
9S = \(3^2+3^4+3^6+...+3^{2004}\)
9S - S = \(3^2+3^4+3^6+...+3^{2004}\) - (\(3^0+3^2+3^4+...+3^{2002}\))
8S = \(3^{2004}-1\)
=> 8S \(< 3^{2004}\)
số số hạng: ( 2500 - 2 ) : 2 +1 = 1250 số
tổng: ( 2500 +2 ) . 1250 : 2 = 1563750
Vì: 1250 . 1251 = 1563750
=> x = 1250
Dãy phải có số số hạng là:
(2500-2):2+1=1250(số)
Tổng là:
(1250+2).1250=1251.1250.
Mà:
x.(x+1)+1250.1251
=>x=1250
Dãy phải có số số hạng là:
(2500-2):2+1=1250(số)
Tổng là:
(1250+2).1250=1251.1250.
Mà:
x.(x+1)+1250.1251
=>x=1250