K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(R=\sqrt{3}\)

\(AB=R\sqrt{3}=3\)

Có các mặt là tam giác đều 

\(\Rightarrow SC=AB=BC=AC=3\)

\(H\) là tâm đường tròn ngoại tiếp đồng thời là chân đường cao :

\(\Rightarrow\Delta SHC\)vuông tại \(H\)

Áp dụng vào tam giác SHC định lý py-ta- go

\(\Rightarrow SH=\sqrt{SC^2-HC^2}=\sqrt{6}cm\)

\(S_{ABC}=\frac{1}{2}.AC.AB.sin\widehat{A}=\frac{1}{2}.3.3.\frac{\sqrt{3}}{2}=\frac{9\sqrt{3}}{4}\)

\(\Rightarrow S\)xung quanh hình chóp \(=4S_{ABC}=9\sqrt{3}\left(cm^2\right)\)

4 tháng 6 2021

Câu hỏi của Chu Hà Gia Khánh - Tiếng Anh lớp 4 - Học trực tuyến OLM

30 tháng 10 2018

1 tháng 10 2023

a) Độ dài trung đoạn của hình chóp S.ABC là độ dài đoạn thẳng từ trung điểm của cạnh đáy đến đỉnh của hình chóp. Vì tam giác ABC là tam giác đều, nên ta có thể tính độ dài trung đoạn bằng cách sử dụng công thức Pythagoras: Trung đoạn = căn bậc hai của (AC^2 - (AC/2)^2) = căn bậc hai của (8^2 - (8/2)^2) = căn bậc hai của (64 - 16) = căn bậc hai của 48 = 4 căn 3 cm

b) Diện tích xung quanh của hình chóp S.ABC là tổng diện tích các mặt bên của hình chóp. Vì tam giác ABC là tam giác đều, nên diện tích mặt bên của hình chóp là diện tích tam giác đều. Ta có công thức tính diện tích tam giác đều: Diện tích tam giác đều = (cạnh^2 * căn 3) / 4 = (8^2 * căn 3) / 4 = 16 căn 3 cm^2

Diện tích xung quanh = Diện tích tam giác đều + Diện tích đáy = 16 căn 3 + 27,72 = 16 căn 3 + 27,72 cm^2

Diện tích toàn phần của hình chóp là tổng diện tích xung quanh và diện tích đáy: Diện tích toàn phần = Diện tích xung quanh + Diện tích đáy = 16 căn 3 + 27,72 + 27,72 = 16 căn 3 + 55,44 cm^2

c) Thể tích của hình chóp tam giác đều S.ABC được tính bằng công thức: Thể tích = (Diện tích đáy * Chiều cao) / 3 = (27,72 * 7,5) / 3 = 69,3 cm^3

10 tháng 10 2023

tại sao là căn 3

 

11 tháng 11 2019

6 tháng 1 2017

a) Tam giác HMN là tam giác đều. Đường cao là :

Giải bài 46 trang 124 SGK Toán 8 Tập 2 | Giải toán lớp 8

Diện tích đáy của hình chóp lục giác đều chính là 6 lần diện tích của tam giác đều HMN. Nên:

Giải bài 46 trang 124 SGK Toán 8 Tập 2 | Giải toán lớp 8

Thể tích của hình chóp:

Giải bài 46 trang 124 SGK Toán 8 Tập 2 | Giải toán lớp 8

b) Trong tam giác vuông SMH có:

Giải bài 46 trang 124 SGK Toán 8 Tập 2 | Giải toán lớp 8

Đường cao của mỗi mặt bên là:

Giải bài 46 trang 124 SGK Toán 8 Tập 2 | Giải toán lớp 8

Diện tích xung quanh của hình chóp là:

Giải bài 46 trang 124 SGK Toán 8 Tập 2 | Giải toán lớp 8

Diện tích toàn phần:

Giải bài 46 trang 124 SGK Toán 8 Tập 2 | Giải toán lớp 8

28 tháng 9 2017

a) Chân đường cao H của hình chóp S.ABC trùng với trọng tâm của tam giác ABC.

Gọi M là trung điểm của BC

Tam giác ABC có

b) Tam giác SAM cân ở M nên

 

Diện tích xung quanh của hình chóp:

 

c) Diện tích toàn phần của hình chóp: 

d) Thể tích của hình chóp

 

AH
Akai Haruma
Giáo viên
15 tháng 5 2021

Lời giải:

Xét tam giác $SAB$ có $SA=SB=10$, $AB=12$

Kẻ $SH\perp AB$ thì $H$ là trung điểm của $AB$.

$\Rightarrow AH=6$ (cm)

Theo định lý Pitago:

$SH=\sqrt{SA^2-AH^2}=\sqrt{10^2-6^2}=8$ (cm)

$S_{SAB}=\frac{SH.AB}{2}=\frac{8.12}{2}=48$ (cm vuông)

$S_{xq}=3S_{SAB}=3.48=144$ (cm vuông)