K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2023

Sửa đề: \(7^{2000}+7^{2001}\)

\(7^{2000}+7^{2001}=7^{2000}\cdot1+7^{2000}\cdot7\)

\(=7^{2000}\left(1+7\right)\)

\(=7^{2000}\cdot8⋮8\)

a Đ

b Đ

c S

28 tháng 8 2021

đúng

đúng

sai

25 tháng 12 2017

Ta có:
1000 chia hết cho 8 => 10^3 chia hết cho 8
=>10^25.10^3 chia hết cho 8
và 8 chia hết cho 8
=>10^28+8 chia hết cho 8 (1)
Lại có 10^28+8= 1000....08(27 CS 0)
=>10^28+8 chia hết cho 9 (2)
Lại vì ƯCLN (8;9)=1 (3)
Từ (1);(2);(3)=>10^28+8 chia hết cho 72

k mk nha

*Chứng minh rằng (10^28+8) chia hết cho 4:

Ta có:10^28=10^2.10^26 mà 10^2 chia hết cho 4 nên 10^2.10^26 chia hết cho 4.(1)

          8 chia hết cho 4.(2)

Từ (1) và (2) ta thấy(10^28+8) chia hết cho 4.(3)

*Chứng minh rằng (10^28+8) chia hết cho 9:

Ta có : 10^28=100..00(29 chữ số,28 chữ số 0)

                10^28+8=1000..008(29 chữ số , 27 chữ số 0)

Tổng các chữ số của tổng đó là:

                           1+0.27+8=9 chia hết cho 9(4)

Vậy từ (3) và (4) ta có (10^28+8) chia hết cho 36.

21 tháng 8 2017

Ta có :

6=2.3

7=7

8=2^3

9=3^2

Vậy bội chung nhỏ nhất của 6,7,8,9 là :

2^3x3^2x7=504

2)Gọi số đó là x .Ta có :

\(x-3\in B\left(8,10,12\right)\)

Mà :

8=2^3

10=2.5

12=2^2.3

Vậy x-3 là :

2^3.5.3=120

\(\Rightarrow X=120+3=123\)

25 tháng 1 2018

co 2n+1chia het cho n+1

suy ra 2 (n+1)-1 chia het cho n+1

suy ra 1 chia het cho n+1 (vi 2(n+1) chia het cho n+1)

suy ra n+1=1

suy ra n=0

ta có:

11...1 chia hết cho 81= 11...1 chia hết cho 9*9

- tổng các chữ số là: 1+1+1+1+1+1...+1= 81 chia hết cho 9 =9 chia hết cho 9

nên 111...1 chia hết cho 81.

5 tháng 9 2021

bạn vào link này 

nhưng vẫn tiick cho mình nha

https://pitago.vn/question/chung-minh-rang-a-so-gom-81-chu-so-1-chia-het-cho-81-b-4105.html

ok t ick nhá

đúng nhoa bn

      chúc bn hok tốt^^

24 tháng 11 2017

Ta thấy n ; n+1 là 2 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 => n.(n+1).(n+2) chia hết cho 2

Nếu n chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 1 => n+5 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n.(n+1).(n+5) chia hết cho 3

Vậy n.(n+1).(n+5) chia hết cho 3

=> n.(n+1).(n+5) chia hết cho 6 ( vì 2 và 3 là 2 số nguyên tố cùng nhau )

=> ĐPCM

k mk nha

24 tháng 11 2017

vì n ( n + 1 ) ( n + 5 ) chia hết cho 6 => n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

+) ta thấy n ( n + 1 ) là tích của 2 số tự nhiên liên tiếp  , mà trong 2 số tự nhiên liên tiếp luôn có 1 số chẵn chia hết cho 2 => n ( n + 1 ) chia hết cho 2 => n ( n + 1 ) ( n + 5 ) chia hết cho 2

+) đem chia n cho 3 xảy ra 3 trường hợp về số dư : dư 0 ; dư 1 ; dư 2 

- nếu n chia cho 3 dư 0 => n chia hết cho 3 = > n ( n + 1 ) ( n + 5 ) chia hết cho 3

- nếu n chia cho 3 dư 1 => n = 3k + 1 ( k e N* )

khi đó  n + 5 = 3k + 1 + 5 = 3k + 6 = 3 ( k + 2 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3 

- nếu n chia cho 3 dư 2 => n = 3k + 2 ( k e N* )

khi đó n + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 3

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 ; 3

mà ƯCLN( 2 ; 3 ) = 1

=> n ( n + 1 ) ( n + 5 ) chia hết cho 2 . 3

=> n ( n + 1 ) ( n + 2 ) chia hết cho 6

chúc bạn học tốt

^^