Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số phàn tử:
\(2029-2021+1=9\)
Tổng dãy trên:
\(\left(2029+2021\right)\cdot\dfrac{9}{2}=18225\)
Số hạng là:
(2029-2021):1+1=9
Tổng là:(2029+2021).9:2=18225
Đáp số :18225
Chúc bạn học tốt nha
a) \(2021 + 2022 + 2023 + 2024 + 2025 + 2026 + 2027 + 2028 + 2029\)
\(\begin{array}{l} = \left( {2021 + 2029} \right) + \left( {2022 + 2028} \right) + \left( {2023 + 2027} \right) + \left( {2024 + 2026} \right) + 2025\\ = 4050 + 4050 + 4050 + 4050 + 2025\\ = 4050.4 + 2025\\ = 16200 + 2025\\ = 18225\end{array}\)
b) Cách 1:
\(30.40.50.60 =(30.60).(40.50)=1800.2000=3600000\)
Cách 2:
\(\begin{array}{l}30.40.50.60 = 3.10.4.10.5.10.6.10\\ = 3.4.5.6.10000\\ = 3.20.6.10000\\ = 3.2.6.10.10000\\ = 36.100000\\ = 3600000\end{array}\)
a) 2021 + 2022 + 2023 + 2024 + 2025 + 2026 + 2027 + 2028 + 2029
= (2021 + 2029) + (2022 + 2028) + (2023 + 2027) + (2024 + 2026) + 2025
= 4050 + 4050 + 4050 + 4050 + 2025
= 4050.4 + 2025
= 16 200 + 2025
= 18 225
b)
30.40.50.60 = 3.10.4.10.5.10.6.10 = 3.4.5.6.10000 = 3.20.6.10000 = 3.2.6.10.10000 = 36.100000 = 3600000
A = \(\dfrac{1}{2021.2022}\) + \(\dfrac{1}{2022.2023}\) + \(\dfrac{1}{2023.2024}\) + \(\dfrac{1}{2024.2025}\) - \(\dfrac{4}{2021.2025}\)
A = \(\dfrac{1}{2021}\) - \(\dfrac{1}{2022}\) + \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\) + \(\dfrac{1}{2023}\) - \(\dfrac{1}{2024}\) + \(\dfrac{1}{2024}\) - \(\dfrac{1}{2025}\) - \(\dfrac{1}{2021}\) + \(\dfrac{1}{2025}\)
A = (\(\dfrac{1}{2021}\) - \(\dfrac{1}{2021}\)) + (\(\dfrac{1}{2022}\) - \(\dfrac{1}{2022}\)) + (\(\dfrac{1}{2023}\) - \(\dfrac{1}{2023}\)) + (\(\dfrac{1}{2024}\) - \(\dfrac{1}{2024}\)) + (\(\dfrac{1}{2025}\) - \(\dfrac{1}{2025}\))
A = 0 + 0 +0 + 0+ ... + 0
A = 0
1. Giải:
Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)
\(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)
\(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)
Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.
⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)
Ta có bảng:
2x+1 | 1 | 3 | 7 | 21 |
x | 0 | 1 | 3 | 10 |
TM | TM | TM | TM |
Vậy xϵ\(\left\{0;1;3;10\right\}.\)
2. Giải:
Do (2x-18).(3x+12)=0.
⇒ 2x-18=0 hoặc 3x+12=0.
⇒ 2x =18 3x =-12.
⇒ x =9 x =-4.
Vậy xϵ\(\left\{-4;9\right\}.\)
3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.
S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.
S= 0 + 0 + ... + 0 + 2025.
⇒S= 2025.
Đề có phải là:
\(\dfrac{x+1}{2024}+\dfrac{x+2}{2025}+\dfrac{x+3}{2026}+\dfrac{x+4}{2027}=4\text{ ?}\)
\(\Rightarrow\text{ }\dfrac{x+1}{2024}+\dfrac{x+2}{2025}+\dfrac{x+3}{2026}+\dfrac{x+4}{2027}-4=0\)
\(\Rightarrow\text{ }\dfrac{x+1}{2024}+\dfrac{x+2}{2025}+\dfrac{x+3}{2026}+\dfrac{x+4}{2027}-1-1-1-1=0\)
\(\Rightarrow\left(\dfrac{x+1}{2024}-1\right)+\left(\dfrac{x+2}{2025}-1\right)+\left(\dfrac{x+3}{2026}-1\right)+\left(\dfrac{x+4}{2027}-1\right)=0\)
\(\Rightarrow\left(\dfrac{x+1-2024}{2024}\right)+\left(\dfrac{x+2-2025}{2025}\right)+\left(\dfrac{x+3-2026}{2026}\right)+\left(\dfrac{x+4-2027}{2027}\right)=0\)
\(\Rightarrow\dfrac{x-2023}{2024}+\dfrac{x-2023}{2025}+\dfrac{x-2023}{2026}+\dfrac{x-2023}{2027}=0\)
\(\Rightarrow\left(x-2023\right)\left(\dfrac{1}{2024}+\dfrac{1}{2025}+\dfrac{1}{2026}+\dfrac{1}{2027}\right)=0\)
Mà \(\dfrac{1}{2024}+\dfrac{1}{2025}+\dfrac{1}{2026}+\dfrac{1}{2027}\ne0\)
\(\Rightarrow x-2023=0\)
\(\Rightarrow x=0+2023\)
\(\Rightarrow x=2023\)
Vậy, \(x=2023.\)
Sửa đề:
B = 1 - 3 - 5 + 7 + 9 - 11 - 13 + 15 + ... + 2019 - 2021 - 2023 + 2025 + 2027
= (1 - 3 - 5 + 7) + (9 - 11 - 13 + 15) + ... + (2019 - 2021 - 2023 + 2025) + 2027
= 0 + 0 + ... + 0 + 2027
= 2027
2023 mũ 2024+2024 mũ 2025+2025 mũ 2026
Xét 2023 mũ 2024
\(^{2023^{2024}}\)=\(^{2023^{4.501}}\)=(\(^{2023^4}\))\(^{^{501}}\)
Ta có:\(^{2023^4}\)tận cùng là 1
=>2023 mũ 4 tất cả mũ 501 tận cùng là 1
Xét 2024 mũ 2025
2024 mũ 2025=2024 mũ 2 .1012+1=2024 mũ 2.1012 nhân 2024=(2024 mũ 2)mũ 1012.2024
Ta có:2024 mũ 2 tận cùng là 6
=>(2024 mũ 2) tất cả mũ 1012 tận cùng là 6
=>(2024 mũ 2) tất cả mũ 1012 nhân 2024 tận cùng là4
Xét 2025 mũ 2026
2025 mũ 2026
5 mũ bao nhiêu thì chữ số tận cùng vẫn là 5
=>2025 mũ 2026 tận cùng là 5
Vậy tổng của các chữ số tận cùng là:1+4+5=10 chia hết cho 10
=> Tổng của 2023 mũ 2024+2024 mũ 2025+2025 mũ 2026 chia hết cho 10
Đây là bài áp dụng tính chất tìm chữ số tận cùng
Chúc bn học tốt
\(2023^{2024}+2024^{2025}+2025^{2026}\equiv\left(-1\right)^{1012}+\left(-1\right)^{2025}+0\equiv0\)(mod 5)
-> chia hết cho 5
Dễ dàng nhận thấy \(2023^{2024}+2025^{2026}\) là số chẵn mà \(2024^{2025}\)cũng là số chẵn nên chia hết cho 2
Do (2,5) = 1 nên chia hết cho 10
Lời giải chi tiết
Ta có: chữ số tận cùng của 2021 . 2022 . 2023 . 2024 là chữ số tận cùng của tích 1.2.3.4 (= 24) là chữ số 4.
Tương tự: chữ số tận cùng 2025 . 2026 . 2027 . 2028 . 2029 là chữ số tận cùng của tích 5.6.7.8.9 (= 15120) là chữ số 0.
Vậy chữ số tận cùng của tổng cần tìm là chữ số 4.
Ta có: chữ số tận cùng của \(2021.2022.2023.2024\) là chữ số tận cùng của tích \(1.2.3.4\left(=24\right)\) là chữ số 4.
Tương tự: chữ số tận cùng \(2025.2026.2027.2028.2029\) là chữ số tận cùng của tích \(5.6.7.8.9\left(=15120\right)\) là chữ số 0.
Vậy chữ số tận cùng của tổng cần tìm là chữ số \(4\).