K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2021

`x^2+x+6=0`

`<=>x^2+x+1/4+23/4=0`

`<=>(x+1/2)^2=-23/4(vô lý)`

`=>` vô nghiệm

* Bạn tạo HĐT để chứng minh nó lớn hơn 0 là sẽ vô nghiệm.

Ta có : $x^2+x+6=\bigg(x^2+2.x.\dfrac{1}{2} + \dfrac{1}{4}\bigg) + \dfrac{23}{4}$

$ = \bigg(\dfrac{1}{2} + x\bigg) + \dfrac{23}{4}>0$

Do đó đa thức cho vô nghiệm.

6 tháng 7 2019

\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)

\(=-3\left(x^2-2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)

\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)

Đa thức luôn âm \(\Rightarrow\)phương trình vô nghiệm 

8 tháng 7 2019

\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)

\(=-3\left(x^2-2x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)

\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]\)

\(=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)

=> Phương trình luôn vô nghiệm

2: Thay x=a-1 vào pt, ta được:

\(\left(a-1\right)^2-a\left(a-1\right)+1=0\)

\(\Leftrightarrow a^2-2a+1-a^2+a+1=0\)

=>2-a=0

hay a=2

9 tháng 6 2017

Ta có : n2 + 4n + 6 = (n2 + 2.n.2 + 4) + 2 = (n2 + 2.n.2 + 22) + 2 = (n + 2)2 + 2 

Mà (n + 2)2 \(\ge0\forall x\in R\)

Nên (n + 2)2 + 2 \(\ge2\forall x\in R\)

Do đó : (n + 2)2 + 2 \(\ne0\)

Vậy đa thức n2 + 4n + 6 vô nhiệm

9 tháng 6 2017

n^2+4n+4+2 = (n+2)^2 +2 >0 
=> Phương trình sắp có nghiệm :v

23 tháng 9 2018

mk chiu thua bn oi

23 tháng 9 2018

a) Ta có: a+b+c+d=0 
Suy ra f(1)= a.1^3+b.1^2+c.1+d=a+b+c+d=.0 
Vậy x=1 là một nghiệm của f(x) 
b) Ta có: a+c=b+d => -a+b-c+d=0 
Suy ra f(-1)= a.(-1)^3+b.(-1)^2+c.(-1)+d=-a+b-c+d=0 
Vậy x=-1 là một nghiệm của f(x)

19 tháng 1 2017

Với x khác 1 nhân cả hai vế với (x-1) khác 0

\(\left(x-1\right)\left(x^6+x^5+..+1\right)=x^7-1=0\)

\(x^7=1\)

với x>1 hiển nhiên VT>1 => vô nghiệm

với 0<=x<1 hiển nhiên VT<1

Với x<0  do số mũ =7 lẻ => VT<0<1 

Kết luận: PT x^7-1=0 có nghiệm duy nhất x=1 => (......) khác 0 với mọi x

6 tháng 5 2017

Ta có:\(x^2-3x+6=0\)

       \(\Rightarrow x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2+\frac{15}{4}=0\)

        \(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{15}{4}=0\)

         \(\Rightarrow\left(x-\frac{3}{2}\right)^2=-\frac{15}{4}\)

Vì x2 không thể âm

                   Suy ra PT vô nghiệm