Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)
\(=-3\left(x^2-2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)
\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)
Đa thức luôn âm \(\Rightarrow\)phương trình vô nghiệm
\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)
\(=-3\left(x^2-2x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)
\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]\)
\(=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)
=> Phương trình luôn vô nghiệm
2: Thay x=a-1 vào pt, ta được:
\(\left(a-1\right)^2-a\left(a-1\right)+1=0\)
\(\Leftrightarrow a^2-2a+1-a^2+a+1=0\)
=>2-a=0
hay a=2
Ta có : n2 + 4n + 6 = (n2 + 2.n.2 + 4) + 2 = (n2 + 2.n.2 + 22) + 2 = (n + 2)2 + 2
Mà (n + 2)2 \(\ge0\forall x\in R\)
Nên (n + 2)2 + 2 \(\ge2\forall x\in R\)
Do đó : (n + 2)2 + 2 \(\ne0\)
Vậy đa thức n2 + 4n + 6 vô nhiệm
a) Ta có: a+b+c+d=0
Suy ra f(1)= a.1^3+b.1^2+c.1+d=a+b+c+d=.0
Vậy x=1 là một nghiệm của f(x)
b) Ta có: a+c=b+d => -a+b-c+d=0
Suy ra f(-1)= a.(-1)^3+b.(-1)^2+c.(-1)+d=-a+b-c+d=0
Vậy x=-1 là một nghiệm của f(x)
Với x khác 1 nhân cả hai vế với (x-1) khác 0
\(\left(x-1\right)\left(x^6+x^5+..+1\right)=x^7-1=0\)
\(x^7=1\)
với x>1 hiển nhiên VT>1 => vô nghiệm
với 0<=x<1 hiển nhiên VT<1
Với x<0 do số mũ =7 lẻ => VT<0<1
Kết luận: PT x^7-1=0 có nghiệm duy nhất x=1 => (......) khác 0 với mọi x
Ta có:\(x^2-3x+6=0\)
\(\Rightarrow x^2-2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2+\frac{15}{4}=0\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2+\frac{15}{4}=0\)
\(\Rightarrow\left(x-\frac{3}{2}\right)^2=-\frac{15}{4}\)
Vì x2 không thể âm
Suy ra PT vô nghiệm
`x^2+x+6=0`
`<=>x^2+x+1/4+23/4=0`
`<=>(x+1/2)^2=-23/4(vô lý)`
`=>` vô nghiệm
* Bạn tạo HĐT để chứng minh nó lớn hơn 0 là sẽ vô nghiệm.
Ta có : $x^2+x+6=\bigg(x^2+2.x.\dfrac{1}{2} + \dfrac{1}{4}\bigg) + \dfrac{23}{4}$
$ = \bigg(\dfrac{1}{2} + x\bigg) + \dfrac{23}{4}>0$
Do đó đa thức cho vô nghiệm.