Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`x^2+x+6=0`
`<=>x^2+x+1/4+23/4=0`
`<=>(x+1/2)^2=-23/4(vô lý)`
`=>` vô nghiệm
* Bạn tạo HĐT để chứng minh nó lớn hơn 0 là sẽ vô nghiệm.
Ta có : $x^2+x+6=\bigg(x^2+2.x.\dfrac{1}{2} + \dfrac{1}{4}\bigg) + \dfrac{23}{4}$
$ = \bigg(\dfrac{1}{2} + x\bigg) + \dfrac{23}{4}>0$
Do đó đa thức cho vô nghiệm.
Ta có : n2 + 4n + 6 = (n2 + 2.n.2 + 4) + 2 = (n2 + 2.n.2 + 22) + 2 = (n + 2)2 + 2
Mà (n + 2)2 \(\ge0\forall x\in R\)
Nên (n + 2)2 + 2 \(\ge2\forall x\in R\)
Do đó : (n + 2)2 + 2 \(\ne0\)
Vậy đa thức n2 + 4n + 6 vô nhiệm
\(x^2-3x+4=x^2-2.x.\frac{3}{2}+\frac{9}{4}+4-\frac{9}{4}.\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\)( vô nghiệm )
\(\Rightarrow x^2-3x+4\)vô nghiệm
\(x^2-3x+4\)
\(=x^2-2.x.\frac{3}{2}+\left(\frac{2}{3}\right)^2+\frac{7}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}\)
Vì \(\left(x-\frac{3}{2}\right)^2\ge0;\frac{7}{4}>0\)
=> Đa thưc vô nghiệm
\(x^2-3x+4=x^2-2.x.\frac{3}{2}+\frac{9}{4}+4-\frac{9}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\frac{7}{4}>0\) ( vô nghiệm )
Vậy \(x^2-3x+4\) vô nghiệm
Đặt \(f\left(x\right)=-x^2-2x-3\)
\(=-x^2-x-x-3\)
\(=-x.\left(x-1\right)-\left(x-1\right)-2\)
\(=-[-\left(x-1\right)^2]-2\le-2< 0\)
\(\Rightarrow\)Đa thức không có nghiệm
Đặt \(A=-x^2-2x-3\)
\(\Rightarrow-A=x^2+2x+3\)
\(-A=\left(x^2+2x+1\right)+2\)
\(-A=\left(x+1\right)^2+2\)
\(\Rightarrow A=-\left(x+1\right)^2-2\)
Ta có: \(-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+1\right)^2-2\le2\forall x\)
\(\Rightarrow\) Đa thức vô nghiệm
\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)
\(=-3\left(x^2-2.x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)
\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)
Đa thức luôn âm \(\Rightarrow\)phương trình vô nghiệm
\(-3x^2+x-2=-3\left(x^2-\frac{1}{3}x+\frac{2}{3}\right)\)
\(=-3\left(x^2-2x.\frac{1}{6}+\frac{1}{36}-\frac{1}{36}+\frac{2}{3}\right)\)
\(=-3\left[\left(x-\frac{1}{6}\right)^2+\frac{23}{36}\right]\)
\(=-3\left(x-\frac{1}{6}\right)^2-\frac{23}{12}\)
=> Phương trình luôn vô nghiệm