Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co
/x^3+x/=/9x^2+9/
Ma 9x^2+9 luon luon lon hon 0 voi moi x nen ta suy ra
/x^3+x/=9x^2+9
/x^3+x/=9*(x^2+1)
Suy ra x^3+x=9*(x^2+1) hoac -9*(x^2+1)
+ Neu x^3+x=9*(x^2+1)
( x^2+1)*x=(x^2+1)*9
suy ra x=9(vi x^2+1=x^2+1)
+ Neu x^3+x=-9*(x^2+1)
(x^2+1)*x=-9*(x^2+1)
suy ra x=-9(vi x^2+1=x^2+1)
Vay x thuoc tap hop 9 va -9
a)
\(\begin{matrix}N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\^-M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\\overline{N\left(x\right)-M\left(x\right)=-3x^4+18x^3-2x^2-4x-1}\end{matrix}\)
b)
\(\begin{matrix}M\left(x\right)=-x^4-9x^3+x^2+9x+\dfrac{4}{3}\\^+N\left(x\right)=-4x^4+9x^3-x^2+5x+\dfrac{1}{3}\\\overline{M\left(x\right)+N\left(x\right)=-5x^4+14x+\dfrac{5}{3}}\end{matrix}\)
\(\left(3x-1\right)^2+2\left(9x^2-1\right)+\left(3x+1\right)^2\)
\(=9x^2-6x+1+18x^2+2+9x^2+6x+1\)
\(=36x^2+4\)
\(\left(x^2-1\right)\left(x+3\right)-\left(x-3\right)\left(x^3+3x+9\right)\)
\(=x^3+3x^2-x+3-\left(x^4+3x^2+9x-3x^3-9x-27\right)\)
\(=x^3+3x^2-x+3-x^4-3x^2-9x+3x^3+9x-27\)
\(=\left(3x^2-3x^2\right)+\left(9x-9x\right)-x-\left(27-3\right)+x^3-x^4+3x^3\)
\(=-x-24+x^3-x^4+3x^3\)
\(\left(x+4\right)\left(x-4\right)-\left(x-4\right)^2\)
\(=x^2-16-\left(x-4\right)^2\)
\(=x^2-16-x^2+8x-16\)
\(=8x-32\)
\(\left(\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}\right)-\left(\dfrac{79}{67}-\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\dfrac{12}{67}+\dfrac{13}{41}-\dfrac{79}{67}+\dfrac{28}{41}\)
\(=\dfrac{1}{3}+\left(\dfrac{12}{67}-\dfrac{79}{67}\right)+\left(\dfrac{13}{41}+\dfrac{28}{41}\right)\)
\(=\dfrac{1}{3}+\left(-1\right)+1=\dfrac{1}{3}+0=\dfrac{1}{3}\)
\(\left(\dfrac{15}{4}-5x\right).\left(9x^2-4\right)=0\)
\(\left[{}\begin{matrix}\dfrac{15}{4}-5x=0\\9x^2-4=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}5x=\dfrac{15}{4}\\9x^2=4\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{2}{3}\end{matrix}\right.\)
3: \(\left|x-\dfrac{3}{4}\right|-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left|x-\dfrac{3}{4}\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{3}{4}=\dfrac{1}{2}\\x-\dfrac{3}{4}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{4}\\x=\dfrac{1}{4}\end{matrix}\right.\)
1) (x−1):0,16=−9:(1−x)
\(\Rightarrow\)(x-1):0,16= 9:(-1):(x-1)
\(\Rightarrow\)(x-1):0,16=9:(x-1)
\(\Rightarrow\)(x-1).(x-1)= 9. 0,16
\(\Rightarrow\)(x-1)\(^2\)= 1,44=1,2\(^2\)=(-1,2)\(^2\)
\(\Rightarrow\)x-1=1,2\(\Rightarrow\)x=2,2
hoặc x-1= -1,2\(\Rightarrow\)x= -0,2
Vậy x =2,2 ; x=0,2
...............................
a/ \(\Leftrightarrow9x^2=36\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=6\\3x=-6\end{matrix}\right.\)
\(\Leftrightarrow x=\pm2\)
b/ \(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\) (do \(x^2+\dfrac{1}{2}>0\))
\(\Leftrightarrow x=\pm1\)
c/ Có \(\left|x+4\right|\ge0\forall x\)
=> \(\left|x+4\right|+5\ge5>0\forall x\)
\(\Rightarrow\left|x+4\right|+5=0\left(vô-lí\right)\)
\(\Rightarrow x\in\varnothing\)
d/ \(\sqrt{2x}-3-1=0\)
\(\Leftrightarrow\sqrt{2x}=4\)
\(\Leftrightarrow2x=16\)
\(\Leftrightarrow x=8\)
\(\Leftrightarrow\left|x^2+1\right|\cdot\left(\left|x\right|-9\right)=0\)
=>x=9 hoặc x=-9