Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thêm nữa câu a) Tính: M(x) + N(x)+ P(x)
B) Tính M(x) - N (x) - P(x)
ok rồi giúp mình với nha
Đặt \(A=xy+x^2y^2+x^3y^3+...+x^{100}y^{100}\)
\(\Rightarrow A=xy+\left(xy\right)^2+\left(xy\right)^3+...+\left(xy\right)^{100}\)
\(\Rightarrow A=\left(-1\right)+1+\left(-1\right)+...+1\) ( 100 số hạng )
\(\Rightarrow A=\left[\left(-1\right)+1\right]+\left[\left(-1\right)+1\right]+...+\left[\left(-1\right)+1\right]\) ( 50 cặp số )
\(\Rightarrow A=0\)
Vậy A = 0
1.
a) \(5x.5x.5x=\left(5x\right)^3.\)
b) \(x^1.x^2.....x^{2006}=x^{\frac{\left(2006+1\right).2006}{2}=}x^{2013021}.\)
c) \(x^1.x^4.x^7.....x^{100}=x^{\frac{\left(100+1\right).\left(\frac{100-1}{3}+1\right)}{2}}=x^{1717}.\)
d) \(x^2.x^5.x^8.....x^{2003}=x^{\frac{\left(2003+2\right).\left(\frac{2003-2}{3}+1\right)}{2}}=x^{669670}.\)
2.
\(2^x+80=3^y\)
Với \(x>0\Rightarrow2^x\) chẵn
Và 80 chẵn
\(\Rightarrow2^x+80\) chẵn.
Mà \(3^y\) lẻ
\(\Rightarrow x< 0.\)
Mà \(x\in N\)
\(\Rightarrow x=0.\)
\(\Rightarrow2^0+80=3^y\)
\(\Rightarrow1+80=3^y\)
\(\Rightarrow3^y=81\)
\(\Rightarrow3^y=3^4\)
\(\Rightarrow y=4.\)
Vậy \(\left(x;y\right)=\left(0;4\right).\)
Chúc bạn học tốt!
a: \(P\left(x\right)=3x^5+x^4-2x^2+2x-1\)
\(Q\left(x\right)=-3x^5+2x^2-2x+3\)
b: \(M\left(x\right)=x^4-2\)
\(N\left(x\right)=6x^5+x^4-4X^4+4x-4\)
c: \(M\left(-\dfrac{1}{2}\right)=\dfrac{1}{16}-2=-\dfrac{31}{16}\)
1/ 3x-1 + 5.3x-1 = 162
3x-1(1 + 5) = 162
3x-1 = \(\frac{162}{6}\)
3x-1 = 27
3x-1 = 33
x - 1 = 3
x = 4
2/ B = 3100 - 399 + 398 - 397 + ... + 32 - 3 + 1
\(\Rightarrow\) 3B = 3.3100 - 3.399 + 3.398 - 3.397 + ... + 3.32 - 3.3 + 3.1
= 3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3
Ta có:
4B = 3B + B = (3101 - 3100 + 399 - 398 + ... + 33 - 32 + 3) + (3100 - 399 + 398 - 397 + ... + 32 - 3 + 1)
= 3101 + 3100 - 3100 + 399 - 399 + 398 - 398 + ... + 3 - 3 + 1
= 3101 + 1
\(\Rightarrow\) B = \(\frac{3^{101}+1}{4}\)
Vũ Hồng Linh bạn check lại bài đầu dùm =_="
\(\left[-\frac{1}{3}\right]^3\cdot x=\frac{1}{81}\)
\(\Leftrightarrow x=\frac{1}{81}:\left[-\frac{1}{3}\right]^3\)
\(\Leftrightarrow x=\frac{1}{81}:\left[-\frac{1}{27}\right]\)
\(\Leftrightarrow x=\frac{1}{81}\cdot(-27)=-\frac{1}{3}\)
\(\left[x-\frac{1}{2}\right]^3=\frac{1}{27}\)
\(\Leftrightarrow\left[x-\frac{1}{2}\right]^3=\left[\frac{1}{3}\right]^3\)
=> Làm nốt
Mấy bài kia cũng làm tương tự
(- \(\dfrac{1}{3}\))3.\(x\) = \(\dfrac{1}{81}\)
\(x=\dfrac{1}{81}\) : (- \(\dfrac{1}{3}\))3
\(x\) = - (\(\dfrac{1}{3}\))4 :(\(\dfrac{1}{3}\))3
\(x=-\dfrac{1}{3}\)
Vậy \(x=-\dfrac{1}{3}\)
`Answer:`
\(M=1+x+x^3+x^5+...+x^{2019}+x^{2021}\)
Ta thay `x=-1 vào `M:`
\(M=1+\left(-1\right)+\left(-1\right)^3+\left(-1\right)^5+...+\left(-1\right)^{2019}+\left(-1\right)^{2021}\)
Ta có \(\left(2021-3\right):2+1=2018:2+1=1009+1=1010\)
\(=-1+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\) (Có `1010` số (-1)`)
\(\Rightarrow M=1010.\left(-1\right)=-1010\)