Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: \(x\notin\left\{-7;3;-3\right\}\)
a) Ta có: \(B=\left(\dfrac{x^2+1}{x^2-9}-\dfrac{x}{x+3}+\dfrac{5}{x-3}\right):\left(\dfrac{2x+10}{x+3}-1\right)\)
\(=\left(\dfrac{x^2+1}{\left(x-3\right)\left(x+3\right)}-\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\dfrac{5\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{2x+10}{x+3}-\dfrac{x+3}{x+3}\right)\)
\(=\dfrac{x^2+1-x^2+3x+5x+15}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+10-x-3}{x+3}\)
\(=\dfrac{8x+16}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+7}\)
\(=\dfrac{8x+16}{\left(x-3\right)\left(x+7\right)}\)
b) Ta có: |x-1|=2
\(\Leftrightarrow\left[{}\begin{matrix}x-1=2\\x-1=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\left(loại\right)\\x=-1\left(nhận\right)\end{matrix}\right.\)
Thay x=-1 vào biểu thức \(B=\dfrac{8x+16}{\left(x-3\right)\left(x+7\right)}\), ta được:
\(B=\dfrac{8\cdot\left(-1\right)+16}{\left(-1-3\right)\left(-1+7\right)}=\dfrac{-8+16}{-4\cdot6}=\dfrac{8}{-24}=\dfrac{-1}{3}\)
Vậy: Khi x=-1 thì \(B=\dfrac{-1}{3}\)
c) Để \(B=\dfrac{x+5}{6}\) thì \(=\dfrac{8x+16}{\left(x-3\right)\left(x+7\right)}=\dfrac{x+5}{6}\)
\(\Leftrightarrow6\left(8x+16\right)=\left(x+5\right)\left(x-3\right)\left(x+7\right)\)
\(\Leftrightarrow48x+96=\left(x^2-3x+5x-15\right)\left(x+7\right)\)
\(\Leftrightarrow\left(x^2+2x-15\right)\left(x+7\right)=48x+96\)
\(\Leftrightarrow x^3+7x^2+2x^2+14x-15x-105-48x-96=0\)
\(\Leftrightarrow x^3+9x^2-49x-201=0\)
\(\Leftrightarrow x^3+3x^2+6x^2+18x-67x-201=0\)
\(\Leftrightarrow x^2\left(x+3\right)+6x\left(x+3\right)-67\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+6x-67\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2+6x+9-76\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2-76\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+3-2\sqrt{19}\right)\left(x+3+2\sqrt{19}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\x+3-2\sqrt{19}=0\\x+3+2\sqrt{19}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\left(loại\right)\\x=2\sqrt{19}-3\left(nhận\right)\\x=-2\sqrt{19}-3\left(nhận\right)\end{matrix}\right.\)
Vậy: Để \(B=\dfrac{x+5}{6}\) thì \(x\in\left\{2\sqrt{19}-3;-2\sqrt{19}-3\right\}\)
(oh) hóa trị 1 mà zn hóa trị 2=> cthh la zn(oh)2
với lại ko có oh2 dau chi co OH hoac la H2O
1:
ABCD là hcn
=>AB=CD; AD=BC
=>AB=CD=4cm; CD=BC=3cm
AC=căn 3^2+4^2=5cm
2:
a: Xét tứ giác ABDC có
M là trung điểm chung của BC và AD
góc BAC=90 độ
=>ABDC là hình chữ nhật
b: ΔABC vuông tại A
mà AM là đường trung tuyến
nên AM=BC/2
3:
ABCD là hcn
=>AD=CB và AD//CB
mà AE=AD
nên AE=CB
Xét tứ giác AEBC có
AE//BC
AE=BC
=>AEBC là hình bình hành
=>AC//BE
Bài 1:
\(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=3\end{matrix}\right.\)
1: Xét tứ giác BHCK có
CH//BK
BH//CK
Do đó: BHCK là hình bình hành
Suy ra: Hai đường chéo BC và HK cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của BC
nên M là trung điểm của HK
2: Gọi giao điểm của IH và BC là O
Suy ra: IH\(\perp\)BC tại O và O là trung điểm của IH
Xét ΔHIK có
O là trung điểm của HI
M là trung điểm của HK
Do đó: OM là đường trung bình của ΔHIK
Suy ra: OM//IK
hay BC//IK
mà BC\(\perp\)IH
nên IH\(\perp\)IK
Xét ΔHOC vuông tại O và ΔIOC vuông tại O có
OC chung
HO=IO
Do đó: ΔHOC=ΔIOC
Suy ra: CH=CI
mà CH=BK
nên CI=BK
Xét tứ giác BCKI có IK//BC
nên BCKI là hình thang
mà CI=BK
nên BCKI là hình thang cân
a: Xét tứ giác AMBQ có
P là trung điểm chung của AB và MQ
MA=MB
=>AMBQ là hình thoi
b: BC=2*AM=20cm
\(AC=\sqrt{20^2-18^2}=\sqrt{76}=2\sqrt{19}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot2\sqrt{19}\cdot18=18\sqrt{19}\left(cm^2\right)\)
c: Để AMBQ là hình vuông thì góc ABM=45 độ
=>góc ABC=45 độ
d: \(MP=\dfrac{AC}{2}=\dfrac{2\sqrt{19}}{2}=\sqrt{19}\left(cm\right)\)
=>MQ=2 căn 19(cm)
\(S_{AMBQ}=\dfrac{1}{2}\cdot2\sqrt{19}\cdot18=18\sqrt{19}\left(cm^2\right)\)
k có j bn bè nên thật tình giúp nhau mà, đúng cho mk chứ hjhj
9x2 - 4y2 = (3x)2 - (2y)2 =(3x+2y)(3x-2y) =0
mà 3x-2y =0 => 9x2 -4y2 = 0
\(3xy-y+3x^2-x\)
\(=\left(3xy-y\right)+\left(3x^2-x\right)\)
\(=y\left(3x-1\right)+x\left(3x-1\right)\)
\(=\left(y+x\right)\left(3x-1\right)\)
3xy - y + 3x2 - x
= ( 3xy - y ) + ( 3x2 - x )
= y ( 3x - 1 ) + x ( 3x - 1 )
= ( y + x ) ( 3x - 1 )
19. 3x2-4x+1
= 3x2-3x-x+1
= (3x2-3x)-(x-1)
= 3x(x-1)-(x-1)
= (3x-1)(x-1)
20.3x2+4x-7
= 3x2+3x-7x-7
= (3x2+3x)-(7x+7)
= 3x(x+1)-7(x-1)
= (3x-7)(x-1)
21.3x2+7x-6
= 3x2+9x-2x-6
= (3x2+9x)-(2x+6)
= 3x(x+3)-2(x+3)
= (3x-2)(x+3)
22.3x2+3x-6
= 3x2+6x-3x-6
=(3x2+6x)-(3x+6)
= 3x(x+2)-3(x+2)
=(3x-3)(x+2)
= 3(x-1)(x+2)
23. 3x2-3x-6
=(3x2-6x)+(3x-6)
=3x(x-2)+3(x-2)
=(3x+3)(x-2)
= 3(x+1)(x-2)
24.6x2-13x+6
= 6x2-9x-4x+6
= (6x2-9x)-(4x-6)
=3x(2x-3)-2(2x-3)
=(3x-2)(2x-3)
25.6x2+13x+6
= 6x2+9x+4x+6
= (6x2+9x)+(4x+6)
=3x(2x+3)+2(2x+3)
=(3x+2)(2x+3)
26. 6x2+15x+6
= (6x2+12x)+(3x+6)
= 6x(x+2)+3(x+2)
=(6x+3)(x+2)
=3(2x+1)(x+2)
27. 6x2-15x+6
= (6x2-12x)-(3x-6)
= 6x(x-2)-3(x-2)
=(6x-3)(x-2)
=3(2x-1)(x-2)
28. 6x2+20x+6
= (6x2+18x)+(2x+6)
= 6x(x+3)+2(x+3)
= (6x+2)(x+3)
= 2(3x+1)(x+3)
29.6x2-20x+6
= (6x2-18x)-(2x-6)
= 6x(x-3)+2(x-3)
= (6x-2)(x-3)
= 2(3x-1)(x-3)
30.6x2+12x+6
= (6x2+6x)+(6x+6)
= 6x(x+1)+6(x+1)
= (6x+6)(x+1)
= 6(x+1)(x+1)
= 6(x+1)2
a; \(\Rightarrow6x-8x+3=8\Leftrightarrow-x=5\Leftrightarrow x=-5\)
b, \(\Rightarrow4x-8-6x+9=12x-12\Leftrightarrow14x=13\Leftrightarrow x=\frac{13}{14}\)
c, TH1 : x = 0
TH2 : x + 1 = 0 <=> x = -1
TH3 : x + 3/4 = 0 <=> x = -3/4
d, \(\Leftrightarrow\left(x^2-1\right)\left(2x-1\right)-\left(x^2-1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(2x-1-x-3\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x-4\right)=0\)
TH1 : x = 1 ; TH2 : x = -2 ; TH3 : x = 4