Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 3:
+)Vì BC vuông góc với cả SA và AB nên BC vuông góc với (SAB)
\(\Rightarrow\left(\widehat{SC,\left(SAB\right)}\right)=\widehat{BSC}=30^o\)
Ta có \(SB=\frac{BC}{tan\widehat{BSC}}=a\sqrt{3}\) , \(SA=\sqrt{SB^2-AB^2}=a\sqrt{2}\)
+)Sử dụng phương pháp tọa độ hóa
Xét hệ trục tọa độ Axyz, A là gốc tọa độ, B,D,S lầ lượt nằm trên các tia Ax, Ay, Az
\(\Rightarrow B\left(a;0;0\right),C\left(a;a;0\right),D\left(0;a;0\right),S\left(0;0;a\sqrt{2}\right)\)
\(\Rightarrow E\left(\frac{a}{2};\frac{a}{2};0\right),F\left(0;\frac{a}{2};\frac{a}{\sqrt{2}}\right)\)
Như vậy là biết tọa độ 4 điểm D,E,F,C ta có thể viết phương trình 2 đường thẳng DE, FC và tính khoảng cách theo công thức sau
\(d\left(DE;FC\right)=\frac{\left|\left[\overrightarrow{DE.}\overrightarrow{FC}\right]\overrightarrow{EC}\right|}{\left|\overrightarrow{DE.}\overrightarrow{FC}\right|}\) (không nhớ rõ lắm)
Câu 5:
Gọi I là trung điểm BC, dễ thấy BC vuông góc với (AIA') (vì BC vuông góc với IA,IA')
Từ I kẻ IH vuông góc với AA' tại H
suy ra IH là đường nố vuông góc chung của BC và AA' hay IH chính là khoảng cách của 2 đường thẳng BC và AA'
Tính được IA=a và IA'=\(a\sqrt{3}\)
Lại có tam giác AIA' vuông tại I, có đường cao IH nên ta dùng hệ thức:
\(\frac{1}{IH^2}=\frac{1}{AI^2}+\frac{1}{A'I^2}\Rightarrow IH=\frac{a\sqrt{3}}{2}\)
quần gì rộng nhất là quần đảo
kiến gì ko bao giờ ngủ là kiến thức
quần đảo rộng nhất còn kiến ko bao giờ ngủ là kiến thức
\(\int cos^3xdx=\int cos^2x.cosxdx=\int\left(1-sin^2x\right)d\left(sinx\right)\)
\(=sinx-\dfrac{1}{3}sin^3x+C\)
Chọn D.
Dựa vào đồ thị, ta có tiệm cận đứng x = 1, tiệm cận ngang y = 2 và đồ thị đi qua điểm (0; 1) nên
Đồ thị hàm số y = a x - 1 b x + c có tiệm cận đứng x = 1 b , tiệm cân ngang y = a b 2
Chọn D.
Dựa vào đồ thị, ta có tiệm cận đứng x = 1 , tiệm cận ngang y = 2 và đồ thị đi qua điểm 0 ; 1 (1). Đồ thị hàm số y = a x - 1 b x + c có tiệm cận đứng x = - c b , tiệm cận ngang y = a và đi qua điểm 0 ; - 1 b (2). Từ (1) và (2) suy ra: a = 2 , b = 1 , c = - 1 .
Chọn C.
Áp dụng phương pháp đồng nhất hệ số ta có:
Vậy 1/2 a + b = 1.