Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi:
\(8B=8xyz[(xy+yz+xz)(x+y+z)-xyz]=8xyz(xy+yz+xz-xyz)\)
Áp dụng BĐT Am-Gm dạng \(ab\leq\left(\frac{a+b}{2}\right)^2\Rightarrow 8B\leq\left(\frac{xy+yz+xz+7xyz}{2}\right)^2\)
Bằng Am-Gm dễ dàng chứng minh \(xy+yz+xz\leq\frac{(x+y+z)^2}{3}=\frac{1}{3};xyz\leq\frac{1}{27}\)
Do đó: \(8B\leq\frac{64}{729}\Rightarrow B_{max}=\frac{8}{729}\) \(\Rightarrow 9^3k=\frac{8}{729}.9^3=8\)
Ngoại trừ nhầm lẫn 1 chút xíu ở chỗ lẽ ra là \(x>-4\) thì em ghi thành \(x>4\), còn lại thì đúng
Kết luận nghiệm cũng đúng rồi.
Hợp nghiệm của ngoặc nhọn thì lấy giao các tập nghiệm, hợp nghiệm của ngoặc vuông thì lấy hợp các tập nghiệm
a)TXĐ:\(D=R\)
b)\(f\left(\dfrac{2}{3}\right)=\left(\dfrac{2}{3}\right)^2+\dfrac{2}{3}-2=-\dfrac{8}{9}\)
\(f\left(3\right)=3-2.3=-3\)
\(\left|1-2x\right|< 5-x\)
\(\Leftrightarrow-\left(5-x\right)< 1-2x< 5-x\)
\(\Leftrightarrow x-5< 1-2x< 5-x\)
\(\Leftrightarrow-4< x< 2\)
Ta có : | 1 − 2 x | < 5 − x
=> − ( 5 − x ) < 1 − 2 x < 5 − x
=> x − 5 < 1 − 2 x < 5 − x
=> − 4 < x < 2