Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi góc tạo bởi tia nắng và mặt đất là $\alpha$ thì:
$\tan \alpha =\frac{12}{5}$
$\Rightarrow \alpha= 67,38^0$
Đáp án: ≈12 mét
Giải thích các bước giải:
Chiều cao của cây là 20.tan31≈12mét
\(\tan (C) = \dfrac{AB}{AC} \) ⇔ \(\tan (33) = \dfrac{AB}{40}\) ⇔ \(AB \) \(= 25,9 m\)
Xét \(\Delta\) ABC vuông tại A
\(\tan\left(\widehat{C}\right)=\dfrac{AB}{AC}\)
\(\Leftrightarrow tan\left(34^0\right)=\dfrac{AB}{89}\)
\(\Leftrightarrow AB=60,03m\)
\(tanC=\dfrac{AB}{AC}\Rightarrow AB=AC\cdot tanC=100\cdot tan40^0\approx84m\)
Chọn A
Gọi chiều cao của tháp là AB, bóng của tòa tháp trên mặt đất là AC.
Theo đề, ta có: AB\(\perp\)AC tại A, \(\widehat{C}=45^0\); AC=30m
Xét ΔABC vuông tại A có \(tanC=\dfrac{AB}{AC}\)
=>\(\dfrac{AB}{30}=tan45=1\)
=>AB=30(m)
=>Chọn A
Chiều cao của tháp là:
\(tan40^0\cdot20\approx17\left(m\right)\)
Gọi AB là chiều cao tòa tháp.
AC là bóng tạo trên mặt đất.
Góc C là góc tạo bởi tia nắng và mặt đất.
=> tanC = AB/ AC = 9/12 \(\simeq\) 36052'