Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2\left(x-1\right)+16\left(1-x\right)\)
\(=x^2\left(x-1\right)-16\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-4^2\right)\)
\(=\left(x-1\right)\left(x-4\right)\left(x-4\right)\)
\(\left(x+2\right)^2-16\\ \backslash=\left(x+2-4\right)\left(x+2+4\right)\\ =\left(x-2\right)\left(x+6\right)\)
1: \(x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\)
2: \(x-16=\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)\)
3: \(9x-1=\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)\)
4: \(x\sqrt{x}+1=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
\(1,x-9=\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\\ 2,x-16=\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)\\ 3,9x-1=\left(3\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)\\ 4,x\sqrt{x}+1=\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)\)
Đề Phân tích đa thức thành nhân tử 1/(1 - x )+ 1/(1+x)+2/(1+x^2)+ 4/(1+x^4)+8/(1+x^8) - 16/(1+ x^16)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Bài 1 :
\(x^2-6x+8=x^2-2x-4x+8=x\left(x-2\right)-4\left(x-2\right)=\left(x-4\right)\left(x-2\right)\)
Bài 2 :
\(x^8+x^7+1=x^8+x^7+x^6+x^5+x^4+x^3+x^2+x+1-x^6-x^5-x^4-x^3-x^2-x\)
\(=x^6\left(x^2+x+1\right)+x^3\left(x^2+x+1\right)+x^2+x+1-x^4\left(x^2+x+1\right)-x\left(x^2+x+1\right)\)
=\(\left(x^2+x+1\right)\left(x^6+x^3+1-x^4-x\right)\)
Tick đúng nha
x 16 + x 8 − 2 = ( x 8 ) 2 + x 8 − 2 = ( x 8 − 1 ) ( x 8 + 2 ) = ( x 4 − 1 ) ( x 4 + 1 ) ( x 8 + 2 ) = ( x 2 − 1 ) ( x 2 + 1 ) ( x 4 + 1 ) ( x 8 + 2 ) = ( x − 1 ) ( x + 1 ) ( x 2 + 1 ) ( x 4 + 1 ) ( x 8 + 2 )
\(x^2\).(\(x\) - 1) + 16.( 1 - \(x\))
= \(x^2\).(\(x-1\)) - 16.( \(x-1\))
= (\(x\) - 1).(\(x^2\) - 16)
= (\(x\) - 1).(\(x\)2 - 42)
= (\(x\) - 1).(\(x\) - 4)(\(x\) + 4)