Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhat_Minh.docx
Bạn vào đây nha có đầy đủ hết
Chúc bn hok tốt!!!
Mk thíu bạn vào thống kê hỏi đáp của mk để lấy link nhoa!!!
Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′. Ta có tam giác vuông ABC1 bằng tam giác vuông A'B'C', suy ra B′C′=BC1. Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1. Vì AC > AC1 nên BC > BC1. Suy ra BC > B'C'.
MAI VŨ XUÂN MY:
a) Xét tam giác ABD và tam giác EBD có:
góc A = góc E ( =90độ)
BD = BD (Cạnh chung)
góc B1=-góc B2 (phân giác)
Vậy tam giác ABD = tam giác EBD (chgn)
b) Ta có: tam giác ABD = tam giác EBD (cm a)
=> AB = AE (cạnh tương ứng)
=> tam giác ABE cân tại B
Mà góc B = 60 độ
=> góc A = góc E = \(\frac{180^0-60^0}{2}\)=60 độ
Vậy tam giác ABE là tam giác đều
c) BC=7cm
Theo định lý Pytago, tam giác ABC ( Góc A=90 độ ) có:
\(BC^2=AB^2+AC^2\)
Mà AB, BC, AC > 0 nên BC2 > AB2, BC2 > AC2 hay BC > AB và AC suy ra BC lớn nhất
a: Do AC > A'C' nên lấy được điểm C1 trên cạnh AC sao cho AC1=A′C′.
Ta có ΔABC1=ΔA'B'C'
Suy ra B′C′=BC1
Mặt khác hai đường xiên BC và BC1 kẻ từ B đến đường thẳng AC lần lượt có hình chiếu trên AC là AC và AC1.
Vì AC > AC1 nên BC > BC1.
Suy ra BC > B'C'.
b:
-Giả sử AC<A'C'.
Khi đó theo chứng minh câu a) ta có BC < B'C'. Điều này không đúng với giả thiết BC > B'C'.
Giả sử AC=A'C'. Khi đó ta có ΔABC=ΔA'B'C' (c.g.c).
Suy ra BC=B'C'.
Điều này cũng không đúng với giả thiết BC>B'C'. Vậy ta phải có AC>A'C'.
Google đấy bn
khoong hieu