K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề sai, vì chỉ có \(x =  - 3\) thảo mãn \(x + 3 = 0\) nhưng \( - 3 \notin \mathbb{N}\).

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},x + 3 \ne 0\)”.

b) Mệnh đề đúng, vì  \({(x - 1)^2} \ge 0\) hay\({x^2} + 1 \ge 2x\) với mọi số thực x.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} + 1 < 2x\)”

 c) Mệnh đề sai, vì có \(a =  - 2 \in \mathbb{R},\sqrt {{{( - 2)}^2}}  = 2 \ne a\)

Mệnh đề phủ định của mệnh đề này là: “\(\exists a \in \mathbb{R},\sqrt {{a^2}}  \ne a\)”.

NV
10 tháng 10 2019

Mệnh đề trên là mệnh đề đúng mà, sai đâu mà sai bạn? Chắc giáo viên nhầm đó

Một mệnh đề "tồn tại" muốn đúng thì chỉ cần chỉ ra một trường hợp đúng (nhiều hơn 1 cũng ko vấn đề)

Một mệnh đề "với mọi" thì chỉ cần chỉ ra 1 trường hợp sai, mệnh đề đó sẽ sai (có nghĩa muốn "với mọi" đúng thì phải đúng tất cả trường hợp)

HQ
Hà Quang Minh
Giáo viên
23 tháng 9 2023

Phủ định của mệnh đề A là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + 4x + 5 = 0\)”

Phủ định của mệnh đề B là mệnh đề “\(\exists x \in \mathbb{R},{x^2} + x < 1\)”

Phủ định của mệnh đề C là mệnh đề “\(\forall x \in \mathbb{Z},2{x^2} + 3x - 2 \ne 0\)”

Phủ định của mệnh đề D là mệnh đề “\(\forall x \in \mathbb{Z},{x^2} \ge x\)”

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Mệnh đề sai, vì \(x = 0 \in \mathbb{R}\) nhưng \({0^2}\) không lớn hơn 0.

Mệnh đề phủ định của mệnh đề này là: “\(\exists x \in \mathbb{R},{x^2} \le 0\)”

b) Mệnh đề đúng, vì \(x = 1 \in \mathbb{R}\) thỏa mãn \({1^2} = 5.1 - 4\)

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{N},{x^2} \ne 5x - 4\)”

 c) Mệnh đề sai, vì \(2x + 1 = 0 \Leftrightarrow x =  - \frac{1}{2} \notin \mathbb{Z}\)

Mệnh đề phủ định của mệnh đề này là: “\(\forall x \in \mathbb{Z},2x + 1 \ne 0\)”

25 tháng 8 2018

Đáp án D

Phủ định của mệnh đề P là P ( x ) :" ∃ x ∈ R , x 2 − x + 7 ≥ 0 "

10 tháng 3 2018

Đáp án: D

Phủ  định của  ∈ R   là   R . Phủ định của  x– x – 6 < 0 là  x– x – 6  0.

14 tháng 9 2023

d) \(\sqrt[]{x}>x\)

\(\Leftrightarrow x-\sqrt[]{x}< 0\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\left(x\ge0\right)\)

\(\Leftrightarrow0< x< 1\)

15 tháng 9 2023

a) \(P\left(x\right):"x^2-5x+4=0"\)

\(x^2-5x+4=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\end{matrix}\right.\)

Vậy \(x\in\left\{1;4\right\}\) để \(P\left(x\right):"x^2-5x+4=0"\) đúng

b) \(P\left(x\right):"x^2-5x+6=0"\)

\(x^2-5x+6=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{2;3\right\}\) để \(P\left(x\right):"x^2-5x+6=0"\) đúng

c) \(P\left(x\right):"x^2-3x=0"\)

\(x^2-3x=0\)

\(\Leftrightarrow x\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{0;3\right\}\) để \(P\left(x\right):"x^2-3x=0"\) đúng

d) \(P\left(x\right):"\sqrt[]{x}>x"\)

\(\sqrt[]{x}>x\)

\(\Leftrightarrow x-\sqrt[]{x}< 0\)

\(\Leftrightarrow\sqrt[]{x}\left(\sqrt[]{x}-1\right)< 0\)

\(\Leftrightarrow0< x< 1\)

Vậy \(x\in\left(0;1\right)\) để \(P\left(x\right):"\sqrt[]{x}>x"\) đúng

e) \(P\left(x\right):"2x+3< 7"\)

\(2x+3< 7\)

\(\Leftrightarrow2x< 4\)

\(\Leftrightarrow x< 2\)

Vậy \(x\in(-\infty;2)\) để \(P\left(x\right):"2x+3< 7"\) đúng

f) \(P\left(x\right):"x^2+x+1>0"\)

\(x^2+x+1>0\)

\(\Leftrightarrow x^2+x+\dfrac{1}{4}+\dfrac{3}{4}>0\)

\(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)

\(\Leftrightarrow\forall x\in R\) để \(P\left(x\right):"x^2+x+1>0"\) đúng

8 tháng 7 2018

a) A là mệnh đề sai. Mệnh đề phủ định là:"∃n ∈ N, n5 - 3 không là bội số của 7".

b) B là mệnh đề đúng. Mệnh đề phủ định là:"∀n ∈ R, x2-7x+15≤0"

c) C là mệnh đề đúng. Mệnh đề phủ định là:"∀x ∈ R, x3+2x2+8x+16≠0"