K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 6 2017

sai đề rồi bạn ơi, sửa đề

\(B=\dfrac{1}{\sqrt{1}-\sqrt{2}}-\dfrac{1}{\sqrt{2}-\sqrt{3}}-\dfrac{1}{\sqrt{3}-\sqrt{4}}-...-\dfrac{1}{\sqrt{24}-\sqrt{25}}\)

ta có: \(\dfrac{1}{\sqrt{n}-\sqrt{n+1}}=\dfrac{\sqrt{n}+\sqrt{n+1}}{n-n-1}=-\sqrt{n}-\sqrt{n+1}\)

áp dụng vào B, ta có:

\(B=-\sqrt{1}-\sqrt{2}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+...+\sqrt{24}+\sqrt{25}\)

\(B=\sqrt{25}-\sqrt{1}=4\)

bồ giở sách ncpt bài 28b xem, ko sai đề đc đâu

b) Ta có: \(\sqrt{\dfrac{3+\sqrt{5}}{3-\sqrt{5}}}+\sqrt{\dfrac{3-\sqrt{5}}{3+\sqrt{5}}}\)

\(=\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}+\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}}\)

\(=\dfrac{3+\sqrt{5}}{2}+\dfrac{3-\sqrt{5}}{2}\)

\(=\dfrac{3+3}{2}=\dfrac{6}{2}=3\)

24 tháng 6 2023

b) \(\sqrt{\dfrac{1-\sqrt{3}}{1+\sqrt{3}}+\sqrt{\dfrac{2+\sqrt{3}}{2-\sqrt{3}}}}\)

\(=\sqrt{\dfrac{1-\sqrt{3}}{1+\sqrt{3}}+\sqrt{\dfrac{4+2\sqrt{3}}{4-2\sqrt{3}}}}\)

\(=\sqrt{\dfrac{1-\sqrt{3}}{1+\sqrt{3}}+\dfrac{\sqrt{3}+1}{\sqrt{3}-1}}=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2-\left(\sqrt{3}-1\right)^2}{\left(\sqrt{3}-1\right).\left(\sqrt{3}+1\right)}}\)

\(=\sqrt{\dfrac{4\sqrt{3}}{2}}=\sqrt{2\sqrt{3}}\)

23 tháng 7 2023

\(a,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{6-2}+\dfrac{3.\left(\sqrt{6}-\sqrt{5}\right)}{6-5}\\ =\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}+3\left(\sqrt{6}-\sqrt{5}\right)\\ =\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}+3\sqrt{6}-3\sqrt{5}\\ =4\sqrt{6}-2\sqrt{5}\)

\(b,=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{5-2}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}-\dfrac{\sqrt{2}.\sqrt{2}}{\sqrt{2}\sqrt{4+\sqrt{15}}}\\ =\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\dfrac{1}{\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}}-\dfrac{2}{\sqrt{8+2.\sqrt{3}.\sqrt{5}}}\\ =\sqrt{5}+\sqrt{2}-\dfrac{1}{\left|\sqrt{3}-\sqrt{2}\right|}-\dfrac{2}{\sqrt{\left(\sqrt{5}+\sqrt{3}\right)^2}}\\ =\sqrt{5}+\sqrt{2}-\dfrac{1}{\sqrt{3}-\sqrt{2}}-\dfrac{2}{\left|\sqrt{5}+\sqrt{3}\right|}\)

\(=\sqrt{5}+\sqrt{2}-\dfrac{\sqrt{3}+\sqrt{2}}{3-2}-\dfrac{2.\left(\sqrt{5}-\sqrt{3}\right)}{5-3}\\ =\sqrt{5}+\sqrt{2}-\sqrt{3}-\sqrt{2}-\dfrac{2.\left(\sqrt{5}-\sqrt{3}\right)}{2}\\ =\sqrt{5}+\sqrt{2}-\sqrt{3}-\sqrt{2}-\sqrt{5}+\sqrt{3}\\ =0\)

a: \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}+\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}+\dfrac{3\left(\sqrt{6}-\sqrt{5}\right)}{1}\)

\(=\sqrt{5}+\sqrt{2}+\sqrt{6}-\sqrt{2}+3\sqrt{6}-3\sqrt{5}\)

\(=-2\sqrt{5}+4\sqrt{6}\)

b: \(=\dfrac{3\left(\sqrt{5}+\sqrt{2}\right)}{3}-\dfrac{1}{\sqrt{5-2\sqrt{6}}}+\dfrac{2}{\sqrt{8+2\sqrt{15}}}\)

\(=\sqrt{5}+\sqrt{2}-\dfrac{1}{\sqrt{3}-\sqrt{2}}+\dfrac{2}{\sqrt{5}+\sqrt{3}}\)

\(=\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{2}\)

=2căn 5-2căn 3

11 tháng 6 2021

\(A=\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{99}+\sqrt{100}}\)

\(=\dfrac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{1}\right)}+\dfrac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\dfrac{\sqrt{100}-\sqrt{99}}{\left(\sqrt{100}-\sqrt{99}\right)\left(\sqrt{100}+\sqrt{99}\right)}\)

\(=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{100}-\sqrt{99}=\sqrt{100}-\sqrt{1}=10-1=9\)

 

11 tháng 6 2021

cả 2 ý bạn trục căn thức ở mấu là xong nhé:

vd: \(\dfrac{1}{\sqrt{1}+\sqrt{2}}=\dfrac{\sqrt{1}-\sqrt{2}}{-1}\). Rồi tương tự như vậy

b: Ta có: \(\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)

\(=2-\sqrt{3}+\dfrac{1}{3}\sqrt{3}-1+\dfrac{1}{3}\sqrt{3}\)

\(=\dfrac{3-\sqrt{3}}{3}\)

11 tháng 6 2021

Với n\(\in N\)* có: \(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}\left(n+1-n\right)}=\dfrac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n\left(n+1\right)}}\)\(=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)

\(\Rightarrow\)\(\dfrac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\) (*)

a) Áp dụng (*) vào T

\(\Rightarrow T=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{99}}-\dfrac{1}{\sqrt{100}}\)\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

b) Có \(VT=1-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{n}}-\dfrac{1}{\sqrt{n+1}}\)\(=1-\dfrac{1}{\sqrt{n+1}}=\dfrac{4}{5}\)

\(\Leftrightarrow\sqrt{n+1}=5\Leftrightarrow n=24\) (tm)

Vậy n=24.

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

\(A=\frac{1}{\sqrt{1}-\sqrt{2}}-\frac{1}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}-\sqrt{4}}-....-\frac{1}{\sqrt{24}-\sqrt{25}}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{(\sqrt{1}-\sqrt{2})(\sqrt{1}+\sqrt{2})}-\frac{\sqrt{2}+\sqrt{3}}{(\sqrt{2}-\sqrt{3})(\sqrt{2}+\sqrt{3})}+\frac{\sqrt{3}+\sqrt{4}}{(\sqrt{3}-\sqrt{4})(\sqrt{3}+\sqrt{4})}-...-\frac{\sqrt{24}+\sqrt{25}}{(\sqrt{24}-\sqrt{25})(\sqrt{24}+\sqrt{25})}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{-1}-\frac{\sqrt{2}+\sqrt{3}}{-1}+\frac{\sqrt{3}+\sqrt{4}}{-1}-...-\frac{\sqrt{24}+\sqrt{25}}{-1}\)

\(=\frac{(1+\sqrt{2})-(\sqrt{2}+\sqrt{3})+(\sqrt{3}+\sqrt{4})-...-(\sqrt{24}+\sqrt{25})}{-1}\)

\(=\frac{1-\sqrt{25}}{-1}=4\)

AH
Akai Haruma
Giáo viên
27 tháng 10 2018

\(B=\frac{5}{4+\sqrt{11}}+\frac{11-3\sqrt{11}}{\sqrt{11}-3}-\frac{4}{\sqrt{5}-1}+\sqrt{(\sqrt{5}-2)^2}\)

\(=\frac{5(4-\sqrt{11})}{(4+\sqrt{11})(4-\sqrt{11})}+\frac{\sqrt{11}(\sqrt{11}-3)}{\sqrt{11}-3}-\frac{4(\sqrt{5}+1)}{(\sqrt{5}-1)(\sqrt{5}+1)}+\sqrt{5}-2\)

\(=\frac{5(4-\sqrt{11})}{5}+\sqrt{11}-\frac{4(\sqrt{5}+1)}{4}+\sqrt{5}-2\)

\(=4-\sqrt{11}+\sqrt{11}-(\sqrt{5}+1)+\sqrt{5}-2\)

\(=1\)

2 tháng 11 2023

 b) \(\sqrt{12-3\sqrt{7}}-\sqrt{12+3\sqrt{7}}\)

\(=\dfrac{\sqrt{2}\cdot\sqrt{12-3\sqrt{7}}-\sqrt{2}\cdot\sqrt{12+3\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{24-6\sqrt{7}}-\sqrt{24+6\sqrt{7}}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{\left(\sqrt{21}\right)^2-2\cdot\sqrt{21}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{21}\right)^2+2\cdot\sqrt{21}\cdot\sqrt{3}+\left(\sqrt{3}\right)^2}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{\left(\sqrt{21}-\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{21}+\sqrt{3}\right)^2}}{\sqrt{2}}\)

\(=\dfrac{\sqrt{21}-\sqrt{3}-\sqrt{21}-\sqrt{3}}{\sqrt{2}}\)

\(=\dfrac{-2\sqrt{3}}{\sqrt{2}}\)

\(=-\sqrt{6}\)  

c) \(\sqrt[3]{\dfrac{3}{4}}\cdot\sqrt[3]{\dfrac{9}{16}}\)

\(=\sqrt[3]{\dfrac{3\cdot9}{4\cdot16}}\)

\(=\sqrt[3]{\left(\dfrac{3}{4}\right)^3}\)

\(=\dfrac{3}{4}\)

d) \(\dfrac{\sqrt[3]{54}}{\sqrt[3]{-2}}\)

\(=\sqrt[3]{\dfrac{54}{-2}}\)

\(=\sqrt[3]{-27}\)

\(=\sqrt[3]{\left(-3\right)^3}\)

\(=-3\) 

a: Sửa đề: \(\dfrac{1}{\sqrt{3}}+\dfrac{1}{3\sqrt{2}}+\dfrac{1}{\sqrt{3}}\cdot\dfrac{\sqrt{3}-\sqrt{2}}{2\sqrt{3}}\)

\(=\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{3}\cdot\sqrt{6}}+\dfrac{\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{\sqrt{6}+1}{3\sqrt{2}}+\dfrac{\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{2\sqrt{2}\left(\sqrt{6}+1\right)+\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{4\sqrt{3}+2\sqrt{2}+\sqrt{3}-\sqrt{2}}{12}\)

\(=\dfrac{5\sqrt{3}+\sqrt{2}}{12}\)

e: \(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)

\(=\sqrt[3]{2\sqrt{2}+3\sqrt{2}+6+1}-\sqrt[3]{2\sqrt{2}-3\sqrt{2}+6-1}\)

\(=\sqrt[3]{\left(\sqrt{2}+1\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}\)

\(=\sqrt{2}+1-\left(\sqrt{2}-1\right)\)

\(=\sqrt{2}+1-\sqrt{2}+1=2\)