K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2022

Với `x > 0,x \ne 1` có:

    `1/[x+\sqrt{x}]+[2\sqrt{x}]/[x-1]-1/[x-\sqrt{x}]`

`=[\sqrt{x}-1+2x-\sqrt{x}-1]/[\sqrt{x}(\sqrt{x}-1)(\sqrt{x}+1)]`

`=[2x-2]/[\sqrt{x}(x-1)]`

`=[2(x-1)]/[\sqrt{x}(x-1)]`

`=2/\sqrt{x}`

15 tháng 12 2021

\(2\sqrt{a}-a\sqrt{\dfrac{4}{a}}\)

\(=2\sqrt{a}-a.\dfrac{\sqrt{4}}{\sqrt{a}}\)

\(=2\sqrt{a}-a.\dfrac{2}{\sqrt{a}}\)

\(=2\sqrt{a}-2\sqrt{a}\)

\(=0\)

a: \(=\dfrac{x-\sqrt{x}-x-2\sqrt{x}-1-2\sqrt{x}-4}{x-1}\)

\(=\dfrac{-5\sqrt{x}-5}{x-1}=\dfrac{-5}{\sqrt{x}-1}\)

b: \(=\dfrac{5x+10\sqrt{x}+\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)-6x}{x-4}\)

\(=\dfrac{-x+10\sqrt{x}+x-5\sqrt{x}+6}{x-4}\)

\(=\dfrac{5\sqrt{x}+6}{x-4}\)

1: \(A=\dfrac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-5-\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{x-4-\sqrt{x}-8}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}=\dfrac{x-\sqrt{x}-12}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{\sqrt{x}-4}{\sqrt{x}-2}\)

7 tháng 2 2022

\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{\sqrt{x}+1}\left(đk:x\ne1,x\ge0\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)-2\sqrt{x}-\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+\sqrt{x}-2\sqrt{x}-\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{x-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

7 tháng 2 2022

ĐKXĐ: \(x\ne1,x\ge0\)

\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}}{x-1}-\dfrac{1}{\sqrt{x}+1}=\)\(\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x-1}-\dfrac{2\sqrt{x}}{x-1}-\dfrac{\sqrt{x}-1}{x-1}=\)\(\dfrac{x+\sqrt{x}-2\sqrt{x}-\sqrt{x}+1}{x-1}=\)\(\dfrac{x-2\sqrt{x}+1}{x-1}=\)\(\dfrac{(\sqrt{x}-1)^2}{x-1}=\dfrac{\sqrt{x}-1}{\sqrt{x}+1}\)

7 tháng 6 2021

\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\) ĐK : \(x\ge0;x\ne1\)

\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{2}{\sqrt{x}+3}\)

\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)

7 tháng 6 2021

\(=\frac{3\sqrt{x}+1}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}-\frac{2}{\sqrt{x}+3}\)   

\(=\frac{3\sqrt{x}+1-2\cdot\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)   

\(=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)   

\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-1\right)}\)   

\(=\frac{1}{\sqrt{x}-1}\)

\(B=\frac{3\sqrt{x}+1}{x+2\sqrt{x}-3}-\frac{2}{\sqrt{x}+3}\)

\(=\frac{3\sqrt{x}+1-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{3\sqrt{x}+1-2\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)

\(=\frac{\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\frac{1}{\sqrt{x}-1}\)

Ta có: \(\left(\sqrt{14}-3\sqrt{2}\right)^2+6\sqrt{28}\)

\(=14+18-6\sqrt{28}+6\sqrt{28}\)

=32