K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2023

 

YaMate

 

11 tháng 7 2015

S = \(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{110}\right)+\left(\frac{1}{111}+...+\frac{1}{120}\right)+\left(\frac{1}{121}+...+\frac{1}{130}\right)\)

>  \(\frac{1}{110}.10+\frac{1}{120}.10+\frac{1}{130}.10=\frac{1}{11}+\frac{1}{12}+\frac{1}{13}>\frac{1}{12}+\frac{2}{12}=\frac{1}{4}\) (Dễ có: \(\frac{1}{11}+\frac{1}{13}>\frac{2}{12}\))

=> S > \(\frac{1}{4}\) (1)

+) S = \(\left(\frac{1}{101}+\frac{1}{130}\right)+\left(\frac{1}{102}+\frac{1}{129}\right)+...+\left(\frac{1}{115}+\frac{1}{116}\right)\) (Có 15 cặp)

\(\frac{231}{101.130}+\frac{231}{102.129}+...+\frac{231}{115.116}=231.\left(\frac{1}{101.130}+\frac{1}{102.129}+...+\frac{1}{115.116}\right)\)

ta có nhận xét: tích 101.130 có giá trị nhỏ nhất. thật vậy:

Xét 102.129 = (101 + 1).(130 - 1) = 101.130 - 101 + 130 -1 = 101.130 + 28 > 101.130

Tương tự, các cặp còn lại . Do đó, ta có \(\frac{1}{101.130}+\frac{1}{102.129}+...+\frac{1}{115.116}

9 tháng 2 2018

Sao bạn học giỏi thế? 

11 tháng 5 2017

Câu hỏi của Nguyễn Đình Dũng - Toán lớp 6 - Học toán với OnlineMath

Bn vào link này có câu trả lời đó nha

S = 
101
1 +
102
1 + ... +
110
1 +
111
1 + ... +
120
1 +
121
1 + ... +
130
1
>  
110
1 .10 +
120
1 .10 +
130
1 .10 =
11
1 +
12
1 +
13
1 >
12
1 +
12
2 =
4
1  (Dễ có: 
11
1 +
13
1 >
12
2 )
=> S > 
4
1  (1)
+) S = 
101
1 +
130
1 +
102
1 +
129
1 + ... +
115
1 +
116
1  (Có 15 cặp)

101.130
231 +
102.129
231 + ... +
115.116
231 = 231.
101.130
1 +
102.129
1 + ... +
115.116
1
ta có nhận xét: tích 101.130 có giá trị nhỏ nhất. thật vậy:
Xét 102.129 = (101 + 1).(130 - 1) = 101.130 - 101 + 130 -1 = 101.130 + 28 > 101.130
Tương tự, các cặp còn lại . Do đó, ta có 
101.130
1 +
102.129
1 + ... +
115.116
1 <
101.130
1
.15
=> S < 231.
101.130
1
.15 =
2626
693 <
330
91
(2)
Từ (1)(2) => đpcm

28 tháng 1 2022

cẻm ơn bạn nha

 

2 tháng 5 2020

S=\(\left(\frac{1}{101}+\frac{1}{102}+....+\frac{1}{110}\right)\)  + \(\left(\frac{1}{111}+...+\frac{1}{120}\right)\) + \(\left(\frac{1}{121}+...+\frac{1}{130}\right)\)

\(\frac{1}{110}.10+\frac{1}{120}.10+\frac{1}{130.10}=\)\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}\)\(\frac{1}{12}+\frac{2}{12}=\frac{1}{4}\) ( TA CÓ:\(\frac{1}{11}+\frac{1}{13}>\frac{2}{12}\))

\(\Rightarrow S>\frac{1}{4}\)(1)

+)S=\(\left(\frac{1}{101}+\frac{1}{130}\right)+\left(\frac{1}{102}+\frac{1}{129}\right)+...+\) \(\left(\frac{1}{115}+\frac{1}{116}\right)\) (CÓ 15 Cặp)

=\(\left(\frac{231}{101.130}\right)+\left(\frac{231}{102.129}\right)+...+\)\(\left(\frac{231}{115.116}\right)\)=\(231.\left(\frac{1}{101.130}+\frac{1}{102.129}+...+\frac{1}{115.116}\right)\)

ta xét: tích 101.130 có giá trị nhỏ nhất,nên :

xét 101.129=(101+1).(101-1)=101.130-101+130-1=101.130+28>101.130

tương tự các cặp còn lại, vậy ta có:\(\frac{1}{101.130}+\frac{1}{120.129}+...+\frac{1}{115.116}< \frac{1}{101.130}.15\)

\(\Rightarrow S< 231.\frac{1}{101.130}.15=\frac{693}{2626}< \frac{91}{330}\left(2\right)\)

từ (1)và(2) \(\Rightarrow\)điều phải chứng  minh

19 tháng 6 2020

THANKS