Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{91}=\left(2^{13}\right)^7=73728^7\)
\(5^{35}=\left(5^5\right)^7=3125^7\) nhỏ hơn \(73728^7\)
\(\Rightarrow2^{91}\) lớn hơn \(5^{35}\)
\(b,3^{400}=\left(3^4\right)^{100}=81^{100}\\ 4^{300}=\left(4^3\right)^{100}=64^{100}\\ Vì:81^{100}>64^{100}\left(Do:81>64\right)\\ \Rightarrow3^{400}>4^{300}\)
Từ đầu bài
=> 52S=52+54+56+...+5202
=>52S-S= (52+54+56+...+5202)-(1+52+54+...+5200)
=> 24.S = 5202-1
=> S = \(\frac{5^{202}-1}{24}\)
Ta có :
\(S=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+\frac{6}{5}+\frac{7}{6}+\frac{8}{7}+\frac{9}{8}+\frac{10}{9}+\frac{11}{10}+\frac{12}{11}\)
\(S=\frac{2+1}{2}+\frac{3+1}{3}+\frac{4+1}{4}+...+\frac{11+1}{11}\)
\(S=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{11}\right)\)
\(S=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)\)
\(S=10+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}\right)>10\)
\(\Rightarrow\)\(S>10\)
Vậy \(S>10\)
Chúc bạn học tốt ~
\(A=\dfrac{5^{10}+1}{5^{11}+1}\)
=>\(5\cdot A=\dfrac{5^{11}+5}{5^{11}+1}=\dfrac{5^{11}+1+4}{5^{11}+1}=1+\dfrac{4}{5^{11}+1}\)
\(B=\dfrac{5^9+1}{5^{10}+1}\)
=>\(5B=\dfrac{5^{10}+5}{5^{10}+1}=1+\dfrac{4}{5^{10}+1}\)
\(5^{11}+1>5^{10}+1\)
=>\(\dfrac{4}{5^{11}+1}< \dfrac{4}{5^{10}+1}\)
=>\(\dfrac{4}{5^{11}+1}+1< \dfrac{4}{5^{10}+1}+1\)
=>5A<5B
=>A<B
\(10\cdot\dfrac{10^3+5}{10^4+5}=\dfrac{10^4+5+45}{10^4+5}=1+\dfrac{45}{10^4+5}\)
\(10\cdot\dfrac{10^2+5}{10^3+5}=\dfrac{10^3+5+45}{10^3+5}=1+\dfrac{45}{10^3+5}\)
mà \(\dfrac{45}{10^4+5}< \dfrac{45}{10^3+5}\)
nên \(\dfrac{10^3+5}{10^4+5}< \dfrac{10^2+5}{10^3+5}\)