Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
202203 = 8 242 408101 ( 1 )
203202 = 42 209101 ( 2 )
Từ ( 1 ) và ( 2 ) suy ra 202203 < 203202
a= 202 x 204 = 202 x (203+1)=202 x 203 + 202
b=203 x 203 = (202+1) x 203 = 202 x 203 + 203
Vì 203>202 => 202x 203 + 202<202x203 +203
=>a<b
\(202^{303}=\left(2.101\right)^{3.101}=\left(2^3.101^3\right)^{101}=\left(8.101^3\right)^{101}\)
\(303^{202}=\left(3.101\right)^{2.101}=\left(3^2.101^2\right)^{101}=\left(9.101^2\right)^{101}\)
Mà \(8.101^3>9.101^2\)
\(\Rightarrow202^{303}>303^{202}\)
202^303 và 303^202
202^(3.101) và 303^(2.101)
(202^3)^101 và (303^2)^101
202^3 và 303^2
(2.101)^3 va (3.101)^2
2^3.101^3 va 3^2.101^2
8.101.101^2 va 9.101^2
8.101 va 9
808 > 9 => 202^303 > 303^202
\(A=\frac{10^8+2}{10^8-1}=\frac{10^8-1+3}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=\frac{10^8-3+3}{10^8-3}=1+\frac{3}{10^8-3}\)
Nhận thầy 108 - 1 > 108 - 3
=> \(\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
=> \(1+\frac{3}{10^8-1}< \frac{3}{10^8-3}+1\)
=> A < B
b) 17C = \(\frac{17\left(17^{203}+1\right)}{17^{204}+1}=\frac{17^{204}+1+16}{17^{204}+1}=1+\frac{16}{17^{204}+1}\)
17D = \(\frac{17\left(17^{202}+1\right)}{17^{203}+1}=\frac{17^{203}+1+16}{17^{203}+1}=1+\frac{16}{17^{203}+1}\)
Nhận thầy 17203 + 1 < 17204 + 1
=> \(\frac{16}{17^{203}+1}>\frac{16}{17^{204}+1}\)
=> \(\frac{16}{17^{203}+1}+1>\frac{16}{17^{204}+1}+1\Rightarrow17C>17D\Rightarrow C>D\)
\(M=\frac{1}{201}+\frac{1}{202}+...+\frac{1}{299}+\frac{1}{300}\)
\(\Rightarrow\)Có 100 phân số
Ta có: \(\frac{1}{201}>\frac{1}{300}\)
\(\frac{1}{202}>\frac{1}{300}\)
...................
\(\frac{1}{299}>\frac{1}{300}\)
\(\frac{1}{300}=\frac{1}{300}\)
\(\Rightarrow M>\left(\frac{1}{300}+\frac{1}{300}+...+\frac{1}{300}\right)=\frac{100}{300}=\frac{1}{3}\)
Vậy....
em nên gõ công thức trực quan để được hỗ trợ tốt nhất nhé
D = \(\dfrac{1}{7^2}\) - \(\dfrac{2}{7^3}\) + \(\dfrac{3}{7^4}\) - \(\dfrac{4}{7^5}\) +........+ \(\dfrac{201}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
7 \(\times\) D = \(\dfrac{1}{7}\) - \(\dfrac{2}{7^2}\) + \(\dfrac{3}{7^3}\) - \(\dfrac{4}{7^4}\) + \(\dfrac{5}{7^5}\) -.......- \(\dfrac{202}{7^{202}}\)
7D +D = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
D = ( \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)) : 8
Đặt B = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -........+\(\dfrac{1}{7^{201}}\).-\(\dfrac{1}{7^{202}}\)
7 \(\times\) B = 1 - \(\dfrac{1}{7}\)+\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) + \(\dfrac{1}{7^4}\) - \(\dfrac{1}{7^5}\) +.........- \(\dfrac{1}{7^{201}}\)
7B + B = 1 - \(\dfrac{1}{7^{202}}\)
B = ( 1 - \(\dfrac{1}{7^{202}}\)) : 8
D = [ ( 1 - \(\dfrac{1}{7^{202}}\)): 8 - \(\dfrac{202}{7^{203}}\)] : 8
D = \(\dfrac{1}{64}\) - \(\dfrac{1}{64.7^{202}}\) - \(\dfrac{202}{7^{203}.8}\) < \(\dfrac{1}{64}\)
..................tên em là jullei Trinh...........................
Ta có : \(202^{203}=(2\cdot101)^{3\cdot101}=(1^3\cdot101^3)^{101}=(8\cdot101\cdot10^{12}\cdot101)=(808\cdot1012)^{101}\)
\(303^{202}=(3\cdot101)^{2\cdot101}=(32\cdot101^2)^{101}=(9\cdot101^2)^{101}\)
\(\Rightarrow(808\cdot101^2)>(9\cdot101^2)\)
Vậy :